000859057 001__ 859057
000859057 005__ 20210130000149.0
000859057 0247_ $$2doi$$a10.1088/1361-648X/aaed1a
000859057 0247_ $$2ISSN$$a0953-8984
000859057 0247_ $$2ISSN$$a1361-648X
000859057 0247_ $$2pmid$$apmid:30468155
000859057 0247_ $$2WOS$$aWOS:000451067900001
000859057 0247_ $$2altmetric$$aaltmetric:51632878
000859057 037__ $$aFZJ-2019-00008
000859057 041__ $$aEnglish
000859057 082__ $$a530
000859057 1001_ $$0P:(DE-Juel1)167128$$aBocquet, F. C.$$b0
000859057 245__ $$aPeculiar covalent bonding of C 60 /6 H -SiC(0 0 0 1)-(3 × 3) probed by photoelectron spectroscopy
000859057 260__ $$aBristol$$bIOP Publ.80390$$c2018
000859057 3367_ $$2DRIVER$$aarticle
000859057 3367_ $$2DataCite$$aOutput Types/Journal article
000859057 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1546500602_29398
000859057 3367_ $$2BibTeX$$aARTICLE
000859057 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859057 3367_ $$00$$2EndNote$$aJournal Article
000859057 520__ $$aHigh resolution photoemission with synchrotron radiation was used to study the interfaceformation of a thin layer of C60 on 6H-SiC(0 0 0 1)-(3 × 3), characterized by protrudingSi-tetramers. The results show that C60 is chemisorbed by orbital hybridization between thehighest-occupied molecular orbital (HOMO) and the pz orbital of Si adatom at the apex ofthe tetramers. The covalent nature of the bonding was inferred from core level as well asvalence band spectra. The Si 2p spectra reveal that a large fraction (at least 45%) of the Siadatoms remain unbound despite the reactive character of the associated dangling bonds.This is consistent with a model in which each C60 is attached to the substrate through a singlecovalent C60–Si bond. A binding energy shift of the core levels associated with sub-surface Sior C atoms indicates a decrease of the SiC band bending caused by a charge transfer from theC60 molecules to the substrate via the formation of donor-like interface states.
000859057 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000859057 588__ $$aDataset connected to CrossRef
000859057 7001_ $$0P:(DE-HGF)0$$aGiovanelli, L.$$b1
000859057 7001_ $$0P:(DE-HGF)0$$aKsari, Y.$$b2
000859057 7001_ $$0P:(DE-HGF)0$$aOvramenko, T.$$b3
000859057 7001_ $$0P:(DE-HGF)0$$aMayne, A. J.$$b4
000859057 7001_ $$0P:(DE-HGF)0$$aDujardin, G.$$b5
000859057 7001_ $$0P:(DE-HGF)0$$aSpillebout, F.$$b6
000859057 7001_ $$0P:(DE-HGF)0$$aSonnet, P.$$b7
000859057 7001_ $$0P:(DE-HGF)0$$aBondino, F.$$b8
000859057 7001_ $$00000-0001-6465-807X$$aMagnano, E.$$b9
000859057 7001_ $$00000-0002-9943-4348$$aThemlin, J-M$$b10$$eCorresponding author
000859057 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/aaed1a$$gVol. 30, no. 50, p. 505002 -$$n50$$p505002 -$$tJournal of physics / Condensed matter Condensed matter$$v30$$x1361-648X$$y2018
000859057 8564_ $$uhttps://juser.fz-juelich.de/record/859057/files/Bocquet_2018_J._Phys.__Condens._Matter_30_505002.pdf$$yRestricted
000859057 8564_ $$uhttps://juser.fz-juelich.de/record/859057/files/Bocquet_2018_J._Phys.__Condens._Matter_30_505002.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859057 909CO $$ooai:juser.fz-juelich.de:859057$$pVDB
000859057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b0$$kFZJ
000859057 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000859057 9141_ $$y2018
000859057 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859057 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000859057 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859057 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859057 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2017
000859057 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859057 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859057 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859057 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859057 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859057 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859057 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859057 920__ $$lyes
000859057 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000859057 980__ $$ajournal
000859057 980__ $$aVDB
000859057 980__ $$aI:(DE-Juel1)PGI-3-20110106
000859057 980__ $$aUNRESTRICTED