001     859063
005     20210130000150.0
024 7 _ |a 10.1109/IWJT.2018.8330309
|2 doi
037 _ _ |a FZJ-2019-00014
100 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 0
|e Corresponding author
111 2 _ |a 2018 18th International Workshop on Junction Technology (IWJT)
|c Shanghai
|d 2018-03-08 - 2018-03-09
|w China
245 _ _ |a Gate stack and Ni(SiGeSn) metal contacts formation on low bandgap strained (Si)Ge(Sn) semiconductors
260 _ _ |c 2018
|b IEEE
295 1 0 |a 2018 18th International Workshop on Junction Technology (IWJT) : [Proceedings] - IEEE, 2018. - ISBN 978-1-5386-4511-6978-1-5386-4513-0 - doi:10.1109/IWJT.2018.8330309
300 _ _ |a 1-4
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1547478639_17711
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a GeSn is a promising material to make the most of two worlds [1]: (i) its direct bandgap for high Sn contents yields high-mobility and decent optical properties; (ii) as a CMOS compatible material, it benefits from the maturity of group IV semiconductor ultra-large scale integration. However the benefit of high carrier mobility in MOSFETs or direct bandgap in tunnel-FETs can only be used in combination with a high quality, scaled and low defective gate oxide and metallic contacts. In this work, we report on (i) the fabrication and characterization of MOS capacitors on high-Sn-content direct bandgap GeSn alloys and (ii) the formation of metallic contacts with low resistivity. We will also briefly discuss the Schottky barrier tuning by dopant segregation during Ni-stano-germanidation.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Schulte-Braucks, C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a von den Driesch, N.
|0 P:(DE-Juel1)161247
|b 2
|u fzj
700 1 _ |a Tiedemann, Andreas
|0 P:(DE-Juel1)128639
|b 3
|u fzj
700 1 _ |a Breuer, Uwe
|0 P:(DE-Juel1)133840
|b 4
|u fzj
700 1 _ |a Hartmann, J. M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zaumseil, P.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 7
|u fzj
700 1 _ |a Zhao, Q. T.
|0 P:(DE-Juel1)128649
|b 8
|u fzj
773 _ _ |a 10.1109/IWJT.2018.8330309
856 4 _ |u https://juser.fz-juelich.de/record/859063/files/08330309.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/859063/files/08330309.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:859063
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128639
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128649
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21