000859065 001__ 859065
000859065 005__ 20210130000151.0
000859065 0247_ $$2doi$$a10.1088/1361-6528/aaa590
000859065 0247_ $$2ISSN$$a0957-4484
000859065 0247_ $$2ISSN$$a1361-6528
000859065 0247_ $$2ISSN$$a1944-9674
000859065 0247_ $$2ISSN$$a1944-9682
000859065 0247_ $$2pmid$$apmid:29373324
000859065 0247_ $$2WOS$$aWOS:000423447900001
000859065 037__ $$aFZJ-2019-00016
000859065 082__ $$a530
000859065 1001_ $$0P:(DE-HGF)0$$aSaeidi, Ali$$b0$$eCorresponding author
000859065 245__ $$aEffect of hysteretic and non-hysteretic negative capacitance on tunnel FETs DC performance
000859065 260__ $$aBristol$$bIOP Publ.$$c2018
000859065 3367_ $$2DRIVER$$aarticle
000859065 3367_ $$2DataCite$$aOutput Types/Journal article
000859065 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547478812_17711
000859065 3367_ $$2BibTeX$$aARTICLE
000859065 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859065 3367_ $$00$$2EndNote$$aJournal Article
000859065 520__ $$aThis work experimentally demonstrates that the negative capacitance effect can be used to significantly improve the key figures of merit of tunnel field effect transistor (FET) switches. In the proposed approach, a matching condition is fulfilled between a trained-polycrystalline PZT capacitor and the tunnel FET (TFET) gate capacitance fabricated on a strained silicon-nanowire technology. We report a non-hysteretic switch configuration by combining a homojunction TFET and a negative capacitance effect booster, suitable for logic applications, for which the on-current is increased by a factor of 100, the transconductance by 2 orders of magnitude, and the low swing region is extended. The operation of a hysteretic negative capacitance TFET, when the matching condition for the negative capacitance is fulfilled only in a limited region of operation, is also reported and discussed. In this late case, a limited improvement in the device performance is observed. Overall, the paper demonstrates the main beneficial effects of negative capacitance on TFETs are the overdrive and transconductance amplification, which exactly address the most limiting performances of current TFETs.
000859065 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000859065 588__ $$aDataset connected to CrossRef
000859065 7001_ $$0P:(DE-HGF)0$$aJazaeri, Farzan$$b1
000859065 7001_ $$0P:(DE-HGF)0$$aStolichnov, Igor$$b2
000859065 7001_ $$0P:(DE-HGF)0$$aLuong, Gia Vinh$$b3
000859065 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b4$$eCollaboration author
000859065 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b5
000859065 7001_ $$0P:(DE-HGF)0$$aIonescu, Adrian M$$b6
000859065 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/1361-6528/aaa590$$gVol. 29, no. 9, p. 095202 -$$n9$$p095202 -$$tNanotechnology$$v29$$x1361-6528$$y2018
000859065 8564_ $$uhttps://juser.fz-juelich.de/record/859065/files/Saeidi_2018_Nanotechnology_29_095202.pdf$$yRestricted
000859065 8564_ $$uhttps://juser.fz-juelich.de/record/859065/files/Saeidi_2018_Nanotechnology_29_095202.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859065 909CO $$ooai:juser.fz-juelich.de:859065$$pVDB
000859065 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000859065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000859065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b4$$kFZJ
000859065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b5$$kFZJ
000859065 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
000859065 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000859065 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859065 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000859065 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859065 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859065 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859065 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2016
000859065 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859065 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859065 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859065 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859065 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859065 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859065 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859065 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000859065 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859065 9141_ $$y2018
000859065 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000859065 980__ $$ajournal
000859065 980__ $$aVDB
000859065 980__ $$aI:(DE-Juel1)PGI-9-20110106
000859065 980__ $$aUNRESTRICTED