Home > Publications database > Effect of hysteretic and non-hysteretic negative capacitance on tunnel FETs DC performance > print |
001 | 859065 | ||
005 | 20210130000151.0 | ||
024 | 7 | _ | |a 10.1088/1361-6528/aaa590 |2 doi |
024 | 7 | _ | |a 0957-4484 |2 ISSN |
024 | 7 | _ | |a 1361-6528 |2 ISSN |
024 | 7 | _ | |a 1944-9674 |2 ISSN |
024 | 7 | _ | |a 1944-9682 |2 ISSN |
024 | 7 | _ | |a pmid:29373324 |2 pmid |
024 | 7 | _ | |a WOS:000423447900001 |2 WOS |
037 | _ | _ | |a FZJ-2019-00016 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Saeidi, Ali |b 0 |e Corresponding author |
245 | _ | _ | |a Effect of hysteretic and non-hysteretic negative capacitance on tunnel FETs DC performance |
260 | _ | _ | |a Bristol |b IOP Publ. |c 2018 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1547478812_17711 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a This work experimentally demonstrates that the negative capacitance effect can be used to significantly improve the key figures of merit of tunnel field effect transistor (FET) switches. In the proposed approach, a matching condition is fulfilled between a trained-polycrystalline PZT capacitor and the tunnel FET (TFET) gate capacitance fabricated on a strained silicon-nanowire technology. We report a non-hysteretic switch configuration by combining a homojunction TFET and a negative capacitance effect booster, suitable for logic applications, for which the on-current is increased by a factor of 100, the transconductance by 2 orders of magnitude, and the low swing region is extended. The operation of a hysteretic negative capacitance TFET, when the matching condition for the negative capacitance is fulfilled only in a limited region of operation, is also reported and discussed. In this late case, a limited improvement in the device performance is observed. Overall, the paper demonstrates the main beneficial effects of negative capacitance on TFETs are the overdrive and transconductance amplification, which exactly address the most limiting performances of current TFETs. |
536 | _ | _ | |0 G:(DE-HGF)POF3-521 |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Jazaeri, Farzan |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Stolichnov, Igor |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Luong, Gia Vinh |b 3 |
700 | 1 | _ | |0 P:(DE-Juel1)128649 |a Zhao, Qing-Tai |b 4 |e Collaboration author |
700 | 1 | _ | |0 P:(DE-Juel1)128609 |a Mantl, Siegfried |b 5 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Ionescu, Adrian M |b 6 |
773 | _ | _ | |0 PERI:(DE-600)1362365-5 |a 10.1088/1361-6528/aaa590 |g Vol. 29, no. 9, p. 095202 - |n 9 |p 095202 - |t Nanotechnology |v 29 |x 1361-6528 |y 2018 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/859065/files/Saeidi_2018_Nanotechnology_29_095202.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/859065/files/Saeidi_2018_Nanotechnology_29_095202.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:859065 |p VDB |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a External Institute |b 0 |k Extern |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-HGF)0 |a Forschungszentrum Jülich |b 3 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)128649 |a Forschungszentrum Jülich |b 4 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)128609 |a Forschungszentrum Jülich |b 5 |k FZJ |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a External Institute |b 6 |k Extern |
913 | 1 | _ | |0 G:(DE-HGF)POF3-521 |1 G:(DE-HGF)POF3-520 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)0430 |2 StatID |a National-Konsortium |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b NANOTECHNOLOGY : 2016 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)1160 |2 StatID |a DBCoverage |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|