001     859065
005     20210130000151.0
024 7 _ |a 10.1088/1361-6528/aaa590
|2 doi
024 7 _ |a 0957-4484
|2 ISSN
024 7 _ |a 1361-6528
|2 ISSN
024 7 _ |a 1944-9674
|2 ISSN
024 7 _ |a 1944-9682
|2 ISSN
024 7 _ |a pmid:29373324
|2 pmid
024 7 _ |a WOS:000423447900001
|2 WOS
037 _ _ |a FZJ-2019-00016
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Saeidi, Ali
|b 0
|e Corresponding author
245 _ _ |a Effect of hysteretic and non-hysteretic negative capacitance on tunnel FETs DC performance
260 _ _ |a Bristol
|b IOP Publ.
|c 2018
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1547478812_17711
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a This work experimentally demonstrates that the negative capacitance effect can be used to significantly improve the key figures of merit of tunnel field effect transistor (FET) switches. In the proposed approach, a matching condition is fulfilled between a trained-polycrystalline PZT capacitor and the tunnel FET (TFET) gate capacitance fabricated on a strained silicon-nanowire technology. We report a non-hysteretic switch configuration by combining a homojunction TFET and a negative capacitance effect booster, suitable for logic applications, for which the on-current is increased by a factor of 100, the transconductance by 2 orders of magnitude, and the low swing region is extended. The operation of a hysteretic negative capacitance TFET, when the matching condition for the negative capacitance is fulfilled only in a limited region of operation, is also reported and discussed. In this late case, a limited improvement in the device performance is observed. Overall, the paper demonstrates the main beneficial effects of negative capacitance on TFETs are the overdrive and transconductance amplification, which exactly address the most limiting performances of current TFETs.
536 _ _ |0 G:(DE-HGF)POF3-521
|a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Jazaeri, Farzan
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Stolichnov, Igor
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Luong, Gia Vinh
|b 3
700 1 _ |0 P:(DE-Juel1)128649
|a Zhao, Qing-Tai
|b 4
|e Collaboration author
700 1 _ |0 P:(DE-Juel1)128609
|a Mantl, Siegfried
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Ionescu, Adrian M
|b 6
773 _ _ |0 PERI:(DE-600)1362365-5
|a 10.1088/1361-6528/aaa590
|g Vol. 29, no. 9, p. 095202 -
|n 9
|p 095202 -
|t Nanotechnology
|v 29
|x 1361-6528
|y 2018
856 4 _ |u https://juser.fz-juelich.de/record/859065/files/Saeidi_2018_Nanotechnology_29_095202.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/859065/files/Saeidi_2018_Nanotechnology_29_095202.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:859065
|p VDB
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a External Institute
|b 0
|k Extern
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128649
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128609
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a External Institute
|b 6
|k Extern
913 1 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NANOTECHNOLOGY : 2016
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21