000859069 001__ 859069
000859069 005__ 20210130000152.0
000859069 0247_ $$2doi$$a10.1109/Austrochip.2017.10
000859069 0247_ $$2WOS$$aWOS:000427480800002
000859069 037__ $$aFZJ-2019-00020
000859069 1001_ $$0P:(DE-HGF)0$$aHorst, Fabian$$b0$$eCorresponding author
000859069 1112_ $$a2017 25th Austrochip Workshop on Microelectronics (Austrochip)$$cLinz$$d2017-10-12 - 2017-10-12$$wAustria
000859069 245__ $$aDC/AC Compact Modeling of TFETs for Circuit Simulation of Logic Cells Based on an Analytical Physics-Based Framework
000859069 260__ $$bIEEE$$c2017
000859069 29510 $$a2017 Austrochip Workshop on Microelectronics (Austrochip) : [Proceedings] - IEEE, 2017. - ISBN 978-1-5386-3583-4 - doi:10.1109/Austrochip.2017.10
000859069 300__ $$a6-10
000859069 3367_ $$2ORCID$$aCONFERENCE_PAPER
000859069 3367_ $$033$$2EndNote$$aConference Paper
000859069 3367_ $$2BibTeX$$aINPROCEEDINGS
000859069 3367_ $$2DRIVER$$aconferenceObject
000859069 3367_ $$2DataCite$$aOutput Types/Conference Paper
000859069 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1547481253_20255
000859069 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000859069 520__ $$aThis paper presents a DC/AC compact model for double-gate (DG) tunnel field-effect transistors (TFET) which is based on a unified analytical modeling framework. The closed-form model shows a good agreement with both, TCAD simulations and measurements on test structures. A Verilog-A implementation allows for a quick performance evaluation of the DC performance of logic cells. Results of a complementary TFET inverter are in good agreement to measurements. Simulations of an 8T SRAM cell clearly show the critical influence of the ambipolar behavior and leakage current on the performance. The fundamental analytical modeling framework provides deeper physical insight while considering additional effects as trap-assisted tunneling (TAT), junction profile steepness and hetero structures.
000859069 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000859069 588__ $$aDataset connected to CrossRef Conference
000859069 7001_ $$0P:(DE-HGF)0$$aFarokhnejad, Atieh$$b1
000859069 7001_ $$0P:(DE-HGF)0$$aGraef, Michael$$b2
000859069 7001_ $$0P:(DE-HGF)0$$aHosenfeld, Fabian$$b3
000859069 7001_ $$0P:(DE-HGF)0$$aLuong, Gia Vinh$$b4
000859069 7001_ $$0P:(DE-HGF)0$$aLiu, Chang$$b5
000859069 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b6$$eCollaboration author
000859069 7001_ $$0P:(DE-HGF)0$$aLime, Francois$$b7
000859069 7001_ $$0P:(DE-HGF)0$$aIniguez, Benjamin$$b8
000859069 7001_ $$0P:(DE-HGF)0$$aKloes, Alexander$$b9
000859069 773__ $$a10.1109/Austrochip.2017.10
000859069 8564_ $$uhttps://juser.fz-juelich.de/record/859069/files/08114739-1.pdf$$yRestricted
000859069 8564_ $$uhttps://juser.fz-juelich.de/record/859069/files/08114739-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859069 909CO $$ooai:juser.fz-juelich.de:859069$$pVDB
000859069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000859069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000859069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b6$$kFZJ
000859069 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000859069 9141_ $$y2018
000859069 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000859069 980__ $$acontrib
000859069 980__ $$aVDB
000859069 980__ $$acontb
000859069 980__ $$aI:(DE-Juel1)PGI-9-20110106
000859069 980__ $$aUNRESTRICTED