001     859073
005     20210130000153.0
024 7 _ |a 10.1515/intag-2017-0044
|2 doi
024 7 _ |a 0236-8722
|2 ISSN
024 7 _ |a 2300-8725
|2 ISSN
024 7 _ |a 2128/21133
|2 Handle
024 7 _ |a WOS:000453410400003
|2 WOS
024 7 _ |a altmetric:53826405
|2 altmetric
037 _ _ |a FZJ-2019-00024
082 _ _ |a 640
100 1 _ |a Rebmann, Corinna
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a ICOS eddy covariance flux-station site setup: a review
260 _ _ |a Lublin
|c 2018
|b IA PAS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547470663_20255
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Integrated Carbon Observation System Re-search Infrastructure aims to provide long-term, continuous observations of sources and sinks of greenhouse gases such as carbon dioxide, methane, nitrous oxide, and water vapour. At ICOS ecosystem stations, the principal technique for measurements of ecosystem-atmosphere exchange of GHGs is the eddy-covariance technique. The establishment and setup of an eddy-covariance tower have to be carefully reasoned to ensure high quality flux measurements being representative of the investigated ecosystem and comparable to measurements at other stations. To fulfill the requirements needed for flux determination with the eddy-covariance technique, variations in GHG concentrations have to be measured at high frequency, simultaneously with the wind velocity, in order to fully capture turbulent fluctuations. This requires the use of high-frequency gas analysers and ultrasonic anemometers. In addition, to analyse flux data with respect to environmental conditions but also to enable corrections in the post-processing procedures, it is necessary to measure additional abiotic variables in close vicinity to the flux measurements. Here we describe the standards the ICOS ecosystem station network has adopted for GHG flux measurements with respect to the setup of instrumentation on towers to maximize measurement precision and accuracy while allowing for flexibility in order to observe specific ecosystem features.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a ICOS - Integrated Carbon Observation System (211574)
|0 G:(EU-Grant)211574
|c 211574
|f FP7-INFRASTRUCTURES-2007-1
|x 1
536 _ _ |a IDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A)
|0 G:(DE-Juel1)BMBF-01LN1313A
|c BMBF-01LN1313A
|f Nachwuchsgruppen Globaler Wandel 4+1
|x 2
536 _ _ |a TERENO - Terrestrial Environmental Observatories (TERENO-2008)
|0 G:(DE-HGF)TERENO-2008
|c TERENO-2008
|f TERENO-2008
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Aubinet, Marc
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schmid, HaPe
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Arriga, Nicola
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Aurela, Mika
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Burba, George
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Clement, Robert
|0 P:(DE-HGF)0
|b 6
700 1 _ |a De Ligne, Anne
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Fratini, Gerardo
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gielen, Bert
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Grace, John
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 11
|u fzj
700 1 _ |a Gross, Patrick
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Haapanala, Sami
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Herbst, Mathias
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Hörtnagl, Lukas
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Ibrom, Andreas
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Joly, Lilian
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Kljun, Natascha
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Kolle, Olaf
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Kowalski, Andrew
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Lindroth, Anders
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Loustau, Denis
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Mammarella, Ivan
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Mauder, Matthias
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Merbold, Lutz
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Metzger, Stefan
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Mölder, Meelis
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Montagnani, Leonardo
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Papale, Dario
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Pavelka, Marian
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Peichl, Matthias
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Roland, Marilyn
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Serrano-Ortiz, Penélope
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Siebicke, Lukas
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Steinbrecher, Rainer
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Tuovinen, Juha-Pekka
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Vesala, Timo
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Wohlfahrt, Georg
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Franz, Daniela
|0 P:(DE-HGF)0
|b 39
773 _ _ |a 10.1515/intag-2017-0044
|g Vol. 32, no. 4, p. 471 - 494
|0 PERI:(DE-600)2235638-1
|n 4
|p 471 - 494
|t International agrophysics
|v 32
|y 2018
|x 2300-8725
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859073/files/rebmann_graf_2018_IntAgrophys_ICOS.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859073/files/rebmann_graf_2018_IntAgrophys_ICOS.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859073
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129461
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT AGROPHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21