001     859074
005     20210131030851.0
024 7 _ |a 10.1515/intag-2017-0043
|2 doi
024 7 _ |a 0236-8722
|2 ISSN
024 7 _ |a 2300-8725
|2 ISSN
024 7 _ |a 2128/21160
|2 Handle
024 7 _ |a WOS:000453410400004
|2 WOS
024 7 _ |a altmetric:53826399
|2 altmetric
037 _ _ |a FZJ-2019-00025
082 _ _ |a 640
100 1 _ |a Sabbatini, Simone
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations
260 _ _ |a Lublin
|c 2018
|b IA PAS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547479961_23129
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The eddy covariance is a powerful technique to estimate the surface-atmosphere exchange of different scalars at the ecosystem scale. The EC method is central to the ecosystem component of the Integrated Carbon Observation System, a monitoring network for greenhouse gases across the European Continent. The data processing sequence applied to the collected raw data is complex, and multiple robust options for the different steps are often available. For Integrated Carbon Observation System and similar networks, the standardisation of methods is essential to avoid methodological biases and improve comparability of the results. We introduce here the steps of the processing chain applied to the eddy covariance data of Integrated Carbon Observation System stations for the estimation of final CO2, water and energy fluxes, including the calculation of their uncertainties. The selected methods are discussed against valid alternative options in tenns of suitability and respective drawbacks and advantages. The main challenge is to warrant standardised processing for all stations in spite of the large differences in e.g. ecosystem traits and site conditions. The main achievement of the Integrated Carbon Observation System eddy covariance data processing is making CO2 and energy flux results as comparable and reliable as possible, given the current micrometeorological understanding and the generally accepted state-of-the-art processing methods.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a ICOS - Integrated Carbon Observation System (211574)
|0 G:(EU-Grant)211574
|c 211574
|f FP7-INFRASTRUCTURES-2007-1
|x 1
536 _ _ |a IDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A)
|0 G:(DE-Juel1)BMBF-01LN1313A
|c BMBF-01LN1313A
|f Nachwuchsgruppen Globaler Wandel 4+1
|x 2
536 _ _ |a TERENO - Terrestrial Environmental Observatories (TERENO-2008)
|0 G:(DE-HGF)TERENO-2008
|c TERENO-2008
|f TERENO-2008
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mammarella, Ivan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Arriga, Nicola
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fratini, Gerardo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 4
|u fzj
700 1 _ |a Hörtnagl, Lukas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ibrom, Andreas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Longdoz, Bernard
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mauder, Matthias
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Merbold, Lutz
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Metzger, Stefan
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Montagnani, Leonardo
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Pitacco, Andrea
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Rebmann, Corinna
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Sedlák, Pavel
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Šigut, Ladislav
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Vitale, Domenico
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Papale, Dario
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1515/intag-2017-0043
|g Vol. 32, no. 4, p. 495 - 515
|0 PERI:(DE-600)2235638-1
|n 4
|p 495 - 515
|t International agrophysics
|v 32
|y 2018
|x 2300-8725
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859074/files/Sabbatini_graf_2018_IntAgrophys_ICOS.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859074/files/Sabbatini_graf_2018_IntAgrophys_ICOS.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859074
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129461
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT AGROPHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21