000859076 001__ 859076
000859076 005__ 20210131030854.0
000859076 0247_ $$2doi$$a10.1515/intag-2017-0046
000859076 0247_ $$2ISSN$$a0236-8722
000859076 0247_ $$2ISSN$$a2300-8725
000859076 0247_ $$2Handle$$a2128/21161
000859076 0247_ $$2WOS$$aWOS:000453410400009
000859076 0247_ $$2altmetric$$aaltmetric:53826418
000859076 037__ $$aFZJ-2019-00027
000859076 082__ $$a640
000859076 1001_ $$0P:(DE-HGF)0$$aDengel, Sigrid$$b0$$eCorresponding author
000859076 245__ $$aStandardized precipitation measurements within ICOS: rain, snowfall and snow depth: a review
000859076 260__ $$aLublin$$bIA PAS$$c2018
000859076 3367_ $$2DRIVER$$aarticle
000859076 3367_ $$2DataCite$$aOutput Types/Journal article
000859076 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547480108_18910
000859076 3367_ $$2BibTeX$$aARTICLE
000859076 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859076 3367_ $$00$$2EndNote$$aJournal Article
000859076 520__ $$aPrecipitation is one of the most important abiotic variables related to plant growth. Using standardised measurements improves the comparability and quality of precipitation data as well as all other data within the Integrated Carbon Observation System network. Despite the spatial and temporal variation of some types of precipitation, a single point measurement satisfies the requirement as an ancillary variable for eddy covariance measurements. Here the term precipitation includes: rain, snowfall (liquid water equivalent) and snow depth, with the latter two being of interest only where occurring. Weighing gauges defined as Integrated Carbon Observation System standard with the capacity of continuously measuring liquid and solid precipitation are installed free-standing, away from obstacles obstructing rain or snowfall. In order to minimise wind-induced errors, gauges are shielded either naturally or artificially to reduce the adverse effect of wind speed on the measurements. Following standardised methods strengthens the compatibility and comparability of data with other standardised environmental observation networks while opening the possibility for synthesis studies of different precipitation measurement methodologies and types including a wide range of ecosystems and geolocations across Europe.
000859076 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000859076 536__ $$0G:(EU-Grant)211574$$aICOS - Integrated Carbon Observation System (211574)$$c211574$$fFP7-INFRASTRUCTURES-2007-1$$x1
000859076 536__ $$0G:(DE-Juel1)BMBF-01LN1313A$$aIDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A)$$cBMBF-01LN1313A$$fNachwuchsgruppen Globaler Wandel 4+1$$x2
000859076 536__ $$0G:(DE-HGF)TERENO-2008$$aTERENO - Terrestrial Environmental Observatories (TERENO-2008)$$cTERENO-2008$$fTERENO-2008$$x3
000859076 588__ $$aDataset connected to CrossRef
000859076 7001_ $$0P:(DE-Juel1)129461$$aGraf, Alexander$$b1$$ufzj
000859076 7001_ $$0P:(DE-HGF)0$$aGrünwald, Thomas$$b2
000859076 7001_ $$0P:(DE-HGF)0$$aHehn, Markus$$b3
000859076 7001_ $$0P:(DE-HGF)0$$aKolari, Pasi$$b4
000859076 7001_ $$0P:(DE-HGF)0$$aLöfvenius, Mikaell Ottosson$$b5
000859076 7001_ $$0P:(DE-HGF)0$$aMerbold, Lutz$$b6
000859076 7001_ $$0P:(DE-HGF)0$$aNicolini, Giacomo$$b7
000859076 7001_ $$0P:(DE-HGF)0$$aPavelka, Marian$$b8
000859076 773__ $$0PERI:(DE-600)2235638-1$$a10.1515/intag-2017-0046$$gVol. 32, no. 4, p. 607 - 617$$n4$$p607 - 617$$tInternational agrophysics$$v32$$x2300-8725$$y2018
000859076 8564_ $$uhttps://juser.fz-juelich.de/record/859076/files/Dengel_graf_2018_IntAgrophys_ICOS.pdf$$yOpenAccess
000859076 8564_ $$uhttps://juser.fz-juelich.de/record/859076/files/Dengel_graf_2018_IntAgrophys_ICOS.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859076 909CO $$ooai:juser.fz-juelich.de:859076$$pdnbdelivery$$pec_fundedresources$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000859076 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129461$$aForschungszentrum Jülich$$b1$$kFZJ
000859076 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000859076 9141_ $$y2018
000859076 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859076 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859076 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000859076 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT AGROPHYS : 2017
000859076 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000859076 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859076 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859076 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859076 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859076 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000859076 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859076 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000859076 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859076 920__ $$lyes
000859076 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000859076 980__ $$ajournal
000859076 980__ $$aVDB
000859076 980__ $$aUNRESTRICTED
000859076 980__ $$aI:(DE-Juel1)IBG-3-20101118
000859076 9801_ $$aFullTexts