001     859076
005     20210131030854.0
024 7 _ |a 10.1515/intag-2017-0046
|2 doi
024 7 _ |a 0236-8722
|2 ISSN
024 7 _ |a 2300-8725
|2 ISSN
024 7 _ |a 2128/21161
|2 Handle
024 7 _ |a WOS:000453410400009
|2 WOS
024 7 _ |a altmetric:53826418
|2 altmetric
037 _ _ |a FZJ-2019-00027
082 _ _ |a 640
100 1 _ |a Dengel, Sigrid
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Standardized precipitation measurements within ICOS: rain, snowfall and snow depth: a review
260 _ _ |a Lublin
|c 2018
|b IA PAS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547480108_18910
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Precipitation is one of the most important abiotic variables related to plant growth. Using standardised measurements improves the comparability and quality of precipitation data as well as all other data within the Integrated Carbon Observation System network. Despite the spatial and temporal variation of some types of precipitation, a single point measurement satisfies the requirement as an ancillary variable for eddy covariance measurements. Here the term precipitation includes: rain, snowfall (liquid water equivalent) and snow depth, with the latter two being of interest only where occurring. Weighing gauges defined as Integrated Carbon Observation System standard with the capacity of continuously measuring liquid and solid precipitation are installed free-standing, away from obstacles obstructing rain or snowfall. In order to minimise wind-induced errors, gauges are shielded either naturally or artificially to reduce the adverse effect of wind speed on the measurements. Following standardised methods strengthens the compatibility and comparability of data with other standardised environmental observation networks while opening the possibility for synthesis studies of different precipitation measurement methodologies and types including a wide range of ecosystems and geolocations across Europe.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a ICOS - Integrated Carbon Observation System (211574)
|0 G:(EU-Grant)211574
|c 211574
|f FP7-INFRASTRUCTURES-2007-1
|x 1
536 _ _ |a IDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A)
|0 G:(DE-Juel1)BMBF-01LN1313A
|c BMBF-01LN1313A
|f Nachwuchsgruppen Globaler Wandel 4+1
|x 2
536 _ _ |a TERENO - Terrestrial Environmental Observatories (TERENO-2008)
|0 G:(DE-HGF)TERENO-2008
|c TERENO-2008
|f TERENO-2008
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 1
|u fzj
700 1 _ |a Grünwald, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hehn, Markus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kolari, Pasi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Löfvenius, Mikaell Ottosson
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Merbold, Lutz
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Nicolini, Giacomo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Pavelka, Marian
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1515/intag-2017-0046
|g Vol. 32, no. 4, p. 607 - 617
|0 PERI:(DE-600)2235638-1
|n 4
|p 607 - 617
|t International agrophysics
|v 32
|y 2018
|x 2300-8725
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859076/files/Dengel_graf_2018_IntAgrophys_ICOS.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859076/files/Dengel_graf_2018_IntAgrophys_ICOS.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859076
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129461
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT AGROPHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21