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A B S T R A C T

Positive emotions facilitate cognitive performance, and their absence is associated with burdening psychiatric
disorders. However, the brain networks regulating positive emotions are not well understood, especially with
regard to engaging oneself in positive-social situations. Here we report convergent evidence from a multimodal
approach that includes functional magnetic resonance imaging (fMRI) brain activations, meta-analytic functional
characterization, Bayesian model-driven analysis of effective brain connectivity, and personality questionnaires
to identify the brain networks mediating the cognitive up-regulation of positive-social emotions. Our comprehen-
sive approach revealed that engaging in positive-social emotion regulation with a self-referential first-person per-
spective is characterized by dynamic interactions between functionally specialized prefrontal cortex (PFC) areas,
the temporoparietal junction (TPJ) and the amygdala. Increased top-down connectivity from the superior frontal
gyrus (SFG) controls affective valuation in the ventromedial and dorsomedial PFC, self-referential processes in
the TPJ, and modulate emotional responses in the amygdala via the ventromedial PFC. Understanding the brain
networks engaged in the regulation of positive-social emotions that involve a first-person perspective is impor-
tant as they are known to constitute an effective strategy in therapeutic settings.

1. Introduction

Oscar Wilde writes: “I don't want to be at the mercy of my emotions.
I want to use them, to enjoy them, and to dominate them.” (The Picture
of Dorian Gray, 1891). Although these words are overly emphatic, they
describe the capacity to maintain, suppress, or change the nature and
the intensity of our emotions (Gross, 2002). Emotion regulation allows
us to adaptively cope with negative and positive events, and constitutes
an important aspect of our personal well-being and social interactions.

Failure to do so is a major risk factor associated with mood and anxi-
ety disorders (Disner et al., 2011; Treadway and Zald, 2011). The psy-
chological and the neural processes underlying emotion regulation have
been intensely studied over the past decade, leading to the formulation
of brain-based models of emotion regulation (Ochsner and Gross, 2005;
Ochsner et al., 2012; Schlosser et al., 2008).

According to these models, successful emotion regulation is strongly
dependent on the modulation of stimulus-driven bottom-up responses
by cognitive top-down processes (Braunstein et al., 2017; Gross, 2002).

∗ Corresponding author. Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar Street, New Haven, CT, 06519, USA.
Email address: yury.koush@yale.edu (Y. Koush)



Specifically, the prefrontal cortex (particularly the dorsomedial pre-
frontal cortex, dmPFC) is thought to exert influence onto other frontal
and limbic regions involved in emotion processing, such as the ven-
tromedial PFC (vmPFC) as well as the amygdala, to which the dmPFC
and vmPFC are both densely connected (Banks et al., 2007; Braunstein
et al., 2017; Etkin et al., 2011; Kim and Hamann, 2007; Ochsner and
Gross, 2005; Ochsner et al., 2012). The vmPFC, in particular, is involved
in evaluating and updating the affective value of stimulus representa-
tions depending on the context in order to support adequate responses
to them (Braunstein et al., 2017; Roy et al., 2012). Although all mod-
els of emotion regulation assume the existence of top-down regulation
processes between prefrontal regions and the limbic system, most fMRI
studies have focused on the down-regulation of negative emotions, and
far less have investigated brain connectivity while participants engage
themselves in the up-regulation of positive social emotions.

The neural mechanisms of emotion regulation have mainly been
investigated using cognitive reappraisal as an explicit cognitive strat-
egy to decrease negative emotions (Braunstein et al., 2017; Ochsner
et al., 2012). Reappraisal involves either reinterpreting the meaning of
an emotional stimulus, or creating a subjective distance from it (Gross,
2002). Engaging in positive emotions rather than inhibiting or distanc-
ing oneself from negative emotions has received far less attention. Inter-
estingly, some of the few existing studies seem to suggest that brain re-
gions involved in the regulation of positive and negative emotions partly
overlap (Kim and Hamann, 2007; Ochsner et al., 2012; Vrticka et al.,
2012). A better understanding of the mechanisms involved in positive
emotion regulation is important because they may not only promote re-
covery during cognitive therapy of mood disorders (van der Velden et
al., 2015), but also facilitate creative thinking, decision-making, prob-
lem solving, and social bounds (Carpenter et al., 2013; Nadler et al.,
2010). Conversely, their impairment contributes to the severity of mood
disorders, particularly anhedonic symptoms associated with depression
(Disner et al., 2011; Treadway and Zald, 2011).

Another key element of emotional experiences is that they are of-
ten self-referential which is an aspect that determines their intensity ir-
respective of valence or type of emotion (Scherer, 1982). Adopting a
self-relevant egocentric perspective improves emotion regulation suc-
cess in therapeutic settings, compared to adopting a distant third-per-
son observer position (Holmes et al., 2008). Previous studies have iden-
tified the temporoparietal junction (TPJ), dmPFC and precuneus as the
core neural system involved in mentalizing (Spreng et al., 2009), men-
tal-state attribution (Teufel et al., 2010), self-referential processing and
assessment of the emotional states in social situations (Buckner and
Carroll, 2007; Reeck et al., 2016; Zaki and Ochsner, 2012). Impair-
ments of the self-referential neural system is often associated with de-
pression (Lemogne et al., 2009; Wagner et al., 2015), schizophrenia
(Harvey et al., 2013) and autism (Murdaugh et al., 2014; Oberman and
Ramachandran, 2007; Zaki and Ochsner, 2012) disorders.

Finally, emotions are often tied to social situations as interpersonal
interactions constitute an important aspect of humans who are highly
social beings (Adolphs, 2003, 2009; Dunbar, 1998). Socially significant
stimuli are likely also emotionally relevant, guiding our behavior and
communication. Socially relevant stimuli are processed preferentially
(e.g., (Hariri et al., 2002)) and recruit brain regions that are inherently
linked with emotion processing (e.g., (Reeck et al., 2016; Vrticka et al.,
2012)). Frequently, psychiatric conditions are associated with promi-
nent dysfunctional processing of social information and inadequate so-
cial behavior (Kennedy and Adolphs, 2012).

The present study sets out to provide new insights into the func-
tions and the dynamics between prefrontal, temporoparietal and lim-
bic regions during the self-referential regulation of positive-social emo-
tions. For this, we applied an emotion regulation paradigm that re-
quires engaging in a positive-social setting with a first-person perspec

tive. Specifically, we contrasted situations where participants passively
viewed images depicting positive-social situations, and situations where
they engaged themselves in the depicted positive-social situations. To
better understand the neural underpinnings of such emotion regula-
tion, we combined complementary brain activation, meta-analytic func-
tional profile and functional as well as effective connectivity analyses.
Specifically, using functional magnetic resonance imaging (fMRI), we
first identified brain regions involved in the regulation of positive-so-
cial emotions and determined their functional profiles using quantita-
tive functional characterization based on meta-analytic procedures (Fox
et al., 2005). To systematically investigate the interactions between rel-
evant brain regions, we performed a comprehensive analysis of func-
tional connectivity based on complementary meta-analytic connectiv-
ity modeling (MACM, (Fox et al., 2014)) and dynamic causal model-
ing (DCM, Friston et al., 2003). Furthermore, we used standardized psy-
chometric questionnaires to characterize how specific personality traits
and states are linked to the neural dynamics associated with regulat-
ing positive emotions. Finally, we integrate the converging results from
these complementary methods into a network model that incorporates
the function and the dynamic interactions between regions relevant for
engaging oneself in positive-social emotion regulation.

2. Materials and methods

2.1. Participants

Twenty-five healthy human volunteers gave written informed con-
sent to participate in the experiment, which was approved by the local
ethics committee. Of the 25 volunteers, two participants had to be ex-
cluded due to excessive head movements, leaving twenty-three partic-
ipants for the analyses (12 male, 11 female, age 27.7±6.2 years). All
participants were recruited from the local student/research community
and had normal or corrected-to-normal vision, as well as no prior his-
tory of neurological or psychiatric diseases. Participants were paid 20
CHF/hour for their participation.

2.2. Experimental design

The fMRI experiment was set up as a 2×2 factorial design with
factors ‘stimuli’ and ‘task’. The factor ‘stimuli’ contrasted positive-so-
cial scenes (positive images of scenes with people) and neutral scenes
of objects (neutral images). The factor ‘task’ contrasted trials where
participants passively viewed the presented images (passive viewing),
to trials where they imagined to positively experience the positive-so-
cial and the neutral scene from a first-person perspective (self-referen-
tial emotion regulation). During the passive viewing condition, partic-
ipants were asked to focus on the content of the depicted images, and
to avoid mind-wandering. During the self-referential emotion regulation
condition with positive-social scenes, participants were asked to imag-
ine experiencing the depicted positive-social situation from a first-per-
son perspective, for example, by interacting with the people in an ac-
tive and pleasant manner. During the self-referential emotion regula-
tion condition with neutral images, participants were asked to imagine
themselves using the depicted neutral objects in an active and pleasant
manner from a first-person perspective, for example, carrying out the
favorite activity with the object. As an objective measure of compliance
with these instructions, we asked participants to rate the vividness of
their imagery and if they were focus or absent-minded after each fMRI
session (on a scale from 1 to 5).

To assess the effects of self-referential up-regulation of positive-so-
cial emotions on the brain and to identify personality traits that might
predict changes in brain connectivity related to emotion regulation,
participants were asked before and after the fMRI experiment to com-
plete the Emotion Regulation Questionnaire (ERQ, (Gross and John,



2003)), the Positive And Negative Affect Schedule (PANAS-P, (Watson
et al., 1988)) and the Beck Depression Inventory (BDI, (Beck et al.,
1961)). These questionnaires measure habitual use of cognitive reap-
praisal and expressive suppression as emotion regulation strategies
(ERQ), general affective state (PANAS-P), and severity of depression
symptoms (BDI), respectively.

We also asked participants to rate valence and arousal of 60 positive
and 60 neutral images (i.e. 30 images before and 30 images after the ex-
periment) that were similar to the ones used during the experiment (i.e.,
their IAPS valence and arousal values did not differ from those of the
experiment, two-tailed paired t-tests, p-values>.20) using the standard
self-assessment manikin ratings (SAM) on the IAPS 9-point rating scale
(Lang et al., 1993).

During the fMRI experiment, participants performed two runs of
11.3min each. Each of the two runs consisted of 2 blocks, with a block
being either the passive viewing or the self-referential emotion regu-
lation condition. Before a block started, either the instruction ‘view’
or ‘regulate’ was shown to the participant for 4s. The order of passive
viewing and emotion regulation blocks was randomized across partici-
pants. Each block consisted of seven 24s periods during which positive
images were presented, and seven 24s period during which neutral im-
ages were presented. The order of positive and neutral periods was ran-
domized across participants, and the images were presented at a rate
of 4 images per period (6s display duration). These presentation times
were chosen to facilitate imagery during the emotion regulation runs
(Ochsner et al., 2009; Vrticka et al., 2012).

2.3. MRI data acquisition

The experiment was performed on a 3T MRI scanner (Trio Tim,
Siemens Medical Solutions, Erlangen, Germany) at the Brain and Be-
havior Laboratory (University of Geneva). At the beginning of the scan-
ning session we acquired for each participants a T1-weighted structural
image (32 channel receive head coil, 3D MPRAGE, voxel size=1mm⁠3

isotropic, flip angle α=9°, TR=1900ms, TI=900ms, TE=2.27ms),
and a double-echo gradient-echo field maps (TE1=5.19ms,
TE2=7.65ms, voxel size=3×3×2.2mm⁠3, TR = 456 ms, flip an-
gle = 60°, bw = 260 Hz/pixel). Functional images were

acquired with a single-shot gradient-echo T2*-weighted EPI sequence 
with 345 repetitions (TR = 2050 ms, 32 slices volume, matrix size 
= 120 × 120, voxel size = 2 × 2 × 2 mm⁠3, slice-gap distance 
factor = 25%, flip angle =  7 5°, bw= 1  . 57 k  H z/pixel, TE=35 ms, 
GRAPPA, iPAT = 3). The field of view (FOV) i s i llustrated in Fig. 1. The 
positive phase-encoding polarity and the slice tilt of ∼ −15° in combina-
tion with relatively high spatial resolution at 3T was chosen to ensure 
optimal sensitivity and precise segregation of frontal and limbic brain 
areas (Weiskopf et al., 2006, 2007). The GRAPPA acceleration factor 
was chosen to achieve a compromise between the SNR of the 32 chan-
nel coil at 3T (Triantafyllou et al., 2011) and a reasonable temporal 
resolution required for DCM estimations (Stephan et al., 2010). Heart 
rate and respiration were continuously monitored throughout the ex-
periment with a modular data acquisition system (MP150, 1 kHz sam-
pling rate, BIOPAC Systems Inc). Heart rate was measured using a pulse 
oximetry sensor, and respiration was measured using an elastic belt 
around the participant's chest. Visual stimuli and instructions were dis-
played using a rectangular projection screen at the rear of the scan-
ner bore with a mirror positioned within the head-coil. All participants 
were instructed to breathe steadily and to remain as still as possible. 
To account for the sensitivity of especially the functional connectivity 
analysis to head motion artifacts, we excluded two participants that ex-
ceeded an established threshold of 25 head displacements (Van Dijk et 
al., 2012). The number of head movements was counted as the number 
of relative displacements >.1 mm, with displacements being estimated 
as the root-mean-square of the volumetric translation parameters com-
bined (Van Dijk et al., 2012).

2.4. Stimuli

We used as stimuli two sets of photographs (172 photographs each)
from the International Affective Picture Set (IAPS, (Lang et al., 1993)),
the Nencki Affective Picture System (NAPS, (Marchewka et al., 2013))
and the Geneva Affective Picture Database (GAPED, (Dan-Glauser and
Scherer, 2011)). Images in the first set depicted positive-social situa-
tions (positive images of scenes with people; mean normative valence
6.97±0.68, mean normative arousal 4.97±0.82). Images in the sec-
ond set depicted non-social neutral scenes and objects (mean norma

Fig. 1. Brain activations. (A) A significant interaction between task (regulation vs. viewing) and stimulus (positive > neutral) was observed in the TPG. The TPJ was also significantly
active in the main effect of stimulus (positive>neutral). (B) In the main effect of stimulus (positive>neutral), the dmPFC, the vmPFC and bilateral amygdala were also significantly
active. (C) Imagining to engage oneself in experiencing the depicted positive situations was associated with increased activity in the SFG (main effect of task, regulation>viewing). For
illustration purposes, the activation maps were thresholded at p<.005 unc. TPJ – temporoparietal junction, SFG – superior frontal gyrus, dmPFC – dorsomedial prefrontal cortex, vmPFC
– ventromedial prefrontal cortex, AMY – amygdala, FOV – field of view.



tive valence 5.21±0.60, mean normative arousal 3.52±1.05). From
each set, 60 images were used for the pre- and post-scanning behav-
ioral ratings (positive images: mean normative valence 7.06±0.52,
mean normative arousal 5.02±0.95). The remaining 112 images from
the first set (together with the 112 images from the second set) were
used for the fMRI scans (positive images: mean normative valence
6.92±0.74, mean normative arousal 4.94±0.75). There were no va-
lence and arousal differences between images used for the fMRI scans
and images used for the behavioral ratings, nor between images used
for the pre-compared to the post-scanning behavioral ratings (all p-val-
ues>.20). The order of image presentation for the fMRI scans and for
the behavioral ratings was pseudo-randomized for each participant, and
each image was shown only once to a participant. This ensured a uni-
form distribution of stimuli valence and arousal in the picture subsets
and balanced potential color, intensity and scenery differences between
pictures from the different databases. The images were presented cen-
trally and had a diameter of ∼12° visual angle. Positive images were
framed in green, and neutral images were framed in white.

2.5. Data analysis

The fMRI data analysis was performed using SPM12 (Wellcome Trust
Center for Neuroimaging, Queen Square, London, UK). The first 5 EPI
volumes were discarded to account for T1 saturation effects. The re-
maining images were spatially realigned to the mean scan of each ses-
sion, coregistered to the standard MNI structural template using DAR-
TEL (Ashburner, 2007), corrected for geometric distortions (Jenkinson,
2003), and smoothed with an isotropic Gaussian kernel with moderate
6mm full-width-at-half-maximum (FWHM). For the subject-level analy-
sis, we specified general linear models (GLM) with 4 regressors for the
four conditions (i.e. viewing-neutral, viewing-positive, regulation-neu-
tral, regulation-positive), and 6 covariates derived from head move-
ment parameters to capture residual motion artifacts. The regressors
were modeled as boxcar functions convolved with the canonical hemo-
dynamic response function (HRF) in SPM12.

For the whole-brain group level analysis, we performed a factor-
ial 2-way ANOVA with fixed factor ‘condition’ (viewing-neutral, view-
ing-positive, regulation-neutral, regulation-positive) and random fac-
tor ‘subject’. As covariates, we included the participants' age and gen-
der. Statistical maps were corrected for multiple comparisons using
whole-brain family-wise error correction (FWE, p<.05). Small volume
correction (SVC) at the peak-level (FWE, p<.05) was applied to the
temporoparietal junction (TPJ, interaction contrast map, p<.005 unc.)
and superior frontal gyrus (SFG, regulation>viewing contrast map,
p<.005 unc.) using a sphere of 10mm radius centered on independent
coordinates defined with Neurosynth database (MNI coordinates for as-
sociation test, entry ‘self-referential’ for TPJ, [-50, −56, 30], and entry
‘emotion regulation’ for SFG, [-12 58 38]).

2.6. ROI definitions

All ROIs except the amygdala were defined as spheres with a 10mm
radius around the corresponding cluster center of gravity. The cen-
ters of gravity were defined for the clusters of the thresholded acti-
vation maps (p<.005 unc.) as implemented in the Anatomy toolbox
(Eickhoff et al., 2005). The ROIs did not overlap. The dmPFC, vmPFC
and SFG centers of gravity were defined in the positive>neutral im-
ages contrast for the vmPFC ([1, 52, −13]) and the dmPFC ([2, 57,
24]) clusters, and in the regulation>viewing contrast for the SFG
(left: [-12 52 35], right: [10 52 38]) clusters. To localize the bilat-
eral TPJ, we masked the positive>neutral contrast with the regula-
tion>viewing contrast (whole-brain FWE correction, p<.05), and de-
fined left [-45, −68, 26] and right [50, −57, 28] centers of gravity for
the identified TPJ clusters using the Anatomy toolbox. The bilateral

amygdala ROIs were defined anatomically based on the Talairach Dae-
mon atlas (Lancaster et al., 2000) because it is a very small region that
is vulnerable to dropout artifacts and for which a spherical ROI would
have likely included non-amygdala voxels in close proximity.

For each ROI, we first extracted the first principal component of the
individual local multivariate time-series using singular value decompo-
sition to account for potential functional heterogeneity (Friston et al.,
2006; Stephan et al., 2010). The time-series were then corrected for sig-
nal drift and head motion artifacts using a GLM model with regressors
for conditions, head movement covariates, and linear drift. In addition,
the high frequency noise and spikes were removed using a modified
Kalman filter (Koush et al., 2012).

2.7. Analyses of psychometric questionnaires and ratings

We calculated two-tailed Spearman rho correlations between the
participant's average questionnaires and behavioral ratings (i.e. the av-
erage of the scores/ratings from before and after the fMRI experiment
was calculated) with their differences of the beta values between the
self-referential emotion regulation and the passive viewing conditions
of each ROI. This correlation was calculated separately for each ROI.
The statistical significance was thresholded at p<.05 and corrected for
multiple comparisons using false-discovery-rate (FDR). The correlations
were z-scored for illustration purposes.

2.8. Meta-analytic quantitative functional characterization and connectivity
analysis

We characterized the functions of activated voxels in our ROIs us-
ing the BrainMap database (Fox et al., 2005), which contains the re-
sults of a large number of neuroimaging experiments as coordinates of 
the maxima of the statistical maps and associated meta-data employing 
taxonomic categories (cognition, emotion, perception, action, 
interoception), the experimental paradigm classes, and their related 
subcategories (Fox et al., 2005). Two types of inference can be drawn 
on the func-tional characterization test, i.e., forward and reverse 
inference. Forward inference describes how likely a region is activated 
given a particular psychological category, reverse inference describes 
how likely a partic-ular psychological category is given activation in 
that region. We first defined seed regions representing our ROIs as 
activation clusters identi-fied by the group-level analysis. We then used 
forward inference to determine the probability of observ-ing activity in 
these seed regions given a specific psychological category or paradigm 
class (Bzdok et al., 2013; Yarkoni et al., 2011). Note that BrainMap 
uses the general categories if no specific sub-category can be assigned.

To characterize the co-activation patterns between our ROIs, we per-
formed a meta-analytic connectivity analysis (MACM), which computes
the brain-wide co-activation pattern for each seed cluster (Fox et al.,
2014). For this analysis, ROI seed regions were entered into a meta-an-
alytic connectivity modeling analysis, which computes the brain-wide
co-activation pattern for each seed cluster (Fox et al., 2014). Then, for
each ROI, activation likelihood estimation (ALE) meta-analyses were
performed on the sets of coordinates identified as co-activated with the
respective ROI (Laird et al., 2005). The resultant ALE maps were thresh-
olded at p<.05 and corrected for multiple comparisons using FWE.

2.9. Effective connectivity analysis

DCM is a model-based effective connectivity analysis which pro-
vides a Bayesian framework to model functional brain networks as a



set of differential equations that describe not only the architecture of the
network (i.e., the ROIs and their connections), but also the dynamic in-
teractions within the network due to external inputs (e.g., the presenta-
tion of positive images) and due to contextual modulations (e.g., engag-
ing actively in the depicted positive situations). Using Bayesian model
selection (BMS) family-level inference, DCM allows for quantitatively
comparing which model architecture explains the observed data best
(Penny et al., 2010). DCM also allows for computing a posterior proba-
bility of the model parameters and their mean values while taking into
account the evidence and complexity of every to-be-averaged model us-
ing Bayesian model averaging (BMA), and can thus shed light on the
connectivity changes within a network during specific task conditions.
Positive parameter values indicate that increasing activity in a region
results in increasing rate of change in the connected region, whereas
negative parameters indicate that increasing activity in a region results
in decreasing rate of change in the connected region. In order to gener-
alize the results of these analysis to the population, we used a fixed ef-
fect (FFX) approach across performed experimental runs and a random
effect (RFX) approach to account for inter-subject variability. Based on
the results from the previous analyses, we included 5 ROIs in our DCM
analysis: the bilateral SFG, the vmPFC, the dmPFC, the bilateral TPJ,
and the bilateral amygdala.

Due to the large number of possible models within each family, we
had to limit the model space by assuming that each connection is bilat-
eral, and that external and modulatory inputs affect both hemispheres
in the same way (e.g. the external inputs into the left and right amyg-
dala are identical) (Fig. S3). Also, the models without external stim-
uli were excluded. Because the TPJ is the only region that showed a
significant task×stimulus interaction, we were particularly interested
in the connectivity between the TPJ and the other regions involved in
either the task or stimulus processing. Therefore, we varied the mod-
els in how the TPJ was connected to these other regions. The first and
second model families contained all models with the TPJ connected to
the other 4 ROIs, and the amygdala connected to the dmPFC or vmPFC
(496 models each). The third to eighth model families contained all
models with the TPJ connected to any of the other 3 ROIs, and the
amygdala connected either to the dmPFC or vmPFC (248 models each).
The ninth to fourteenth model families contained all models with the
TPJ connected to any of the other 2 ROIs, and the amygdala connected
to either the dmPFC or vmPFC (124 models each). Model families fif-
teen to twenty-eight were partitioned like model families one to four-
teen, except that there was no connection between the bilateral amyg-
dala and TPJ (model families fifteen and sixteen: 248 models each;

model families seventeen to twenty-two: 124 models each; model fam-
ilies twenty-three to twenty-eight: 62 models each). The twenty-ninth
and thirtieth model families contained all models with the TPJ con-
nected only to the amygdala (62 models each). The entire set of mod-
els thus comprised 4′960 model alternatives per participant (23 partic-
ipants), run (2 runs), and condition (2 conditions), resulting in a total
of 456′320 DCM estimations which were computed on the Castor and
Baobab High Performance Computing (HPC) clusters of the EPFL and
the University of Geneva.

Next, we estimated all possible model alternatives and then applied
BMS family level inference procedures to investigate which general
model structure underlay the passive viewing and the emotion regula-
tion conditions when being presented with positive social scenes (Penny
et al., 2010). We partitioned the model space in subsets of thirty model
families that differed in the connectivity pattern between our 5 ROIs
(Fig. S3). The model families with the highest family exceedance prob-
abilities (i.e., the winning models) for the passive viewing and the emo-
tion regulation conditions were identified using family-level BMS, and
their parameters were estimated using BMA. We used DCM as imple-
mented in SPM 12.

3. Results

3.1. Brain activations associated with self-referential positive emotion
regulation

We found a significant interaction (Table 1, task×stimuli) in the
left TPJ, which was mainly driven by a greater activation difference
between the positive and neutral pictures in the self-referential regula-
tion as compared to the passive viewing condition (Fig. 1, Table 1). The
main effect of stimulus (positive>neutral images) was associated with
significant activations in the bilateral TPJ (Fig. 1A), bilateral amygdala,
dmPFC and vmPFC, but also the primary visual cortex (PVC) and lat-
eral occipital cortex (near V5/MT), the lateral fusiform gyrus (around
the fusiform face area (FFA)), the precuneus, the superior temporal sul-
cus (STS), and the inferior frontal gyrus (IFG) (Fig. 1B). The amygdala
showed no evidence of functional lateralization (i.e., comparing individ-
ual contrast images with their flipped counterparts did not reveal a sig-
nificant difference). The main effect of task (regulation>viewing) re-
vealed significant activations in the SFG, which did not overlap with
dmPFC (Fig. 1C).

The observed brain activations were not related to cardio-respira-
tory artifacts, i.e. heart rate and respiration showed no difference be

Table 1
Brain areas related to stimulus content and emotion regulation.

Contrast Anatomical cluster Main peak MNI coordinates T-value p-value

x y z

Interaction task×stimuli TPJ L −58 −56 26 4.00 .014+
regulation>viewing SFG L −14 56 36 3.91 .018+
positive>neutral TPJ L/R −42/44 −54/-56 24/18 3.76/10.28 .025+/<.001

dmPFC R 6 50 34 5.48 .025
vmPFC R 4 58 −12 6.29 .002
AMY L/R −18/18 −8/-6 −14/-14 6.28/6.94 .002/<.001
V5/MT L/R −48/48 −72/-74 12/4 10.93/16.96 <.001/<.001
PVC L/R −22/28 −102/-96 −2/-6 9.37/10.11 <.001/<.001
FFA L/R −42/42 −52/-52 −20/-18 9.52/13.43 <.001/<.001
Precuneus R 2 −58 40 8.42 <.001
STS L/R −68/54 −12/-10 −12/-12 5.64/6.44 .016/.001
sgACC R 2 12 −8 4.95 .008*
IFG R 36 16 26 5.33 .041

Reported are the main peak coordinates of areas that survived whole-brain FWE correction (p<.05). ⁠+ Plus denotes activity peaks which survived SVC statistics (p < .05, FWE). *Asterisk
denotes activity peak that survived peak-level FDR correction. L – left, R – right, TPJ – temporoparietal junction, AMY – amygdala, dmPFC – dorsomedial prefrontal cortex, vmPFC –
ventromedial prefrontal cortex, MT – middle temporal gyrus, PVC – primary visual cortex, FFA – fusiform face area, STS – superior temporal sulcus, IFG – inferior frontal gyrus, SFG –
superior frontal gyrus.



tween the experimental conditions (one-way ANOVA, ps>.05; heart
rate: positive scenes regulation 64.92±3.61 bpm and viewing
63.32±3.23 bpm, neutral scenes regulation 64.87±3.50 bpm and
viewing 63.62±3.27 bpm; respiratory effort: positive scenes regulation
31.92±4.26 a.u. and viewing 31.08±4.34 a.u., neutral scenes regula-
tion 31.94±4.28 a.u. and viewing 31.26±4.32 a.u.). Also, the results
of the whole-brain group level analysis were robust without including
age and gender as covariates: TPJ (interaction, peak t=4.35, p=.008,
SVC-corrected, coordinates [-60, −58, 24]), SFG (regulation>viewing
contrast, peak t=3.81, p=.037, SVC-corrected, coordinates [-12, 54,
36]), dmPFC (positive>neutral contrast, whole-brain FWE-corrected,
t=3.81, p=.050, coordinates [6, 50, 34]), vmPFC (positive>neutral
contrast, whole-brain FWE-corrected, t=5.97, p=.005, coordinates [4,
58, −12]), AMY(R) (positive>neutral contrast, whole-brain FWE-cor-
rected, t=6.93, p<.001, coordinates [18, −6, −14]), AMY(L) (posi-
tive>neutral contrast, whole-brain FWE-corrected, t=6.21, p=.002,
coordinates [-18, −8, −14]).

3.2. Behavioral effects of self-referential positive emotion regulation

All participants strictly adhered to the experimental protocol and
reported having engaged in the emotion regulation and passive view-
ing conditions (mean ability to ‘focus’: 4.4±0.8, mean vividness of
imagery: 3.7±1.1). This engagement led to behaviorally measurable
changes. Comparing pre- and post- experiment scores, we found a sig-
nificant reduction in depression scores (BDI) (before: 4.4±1.2; after:
3.4±1.1; t=3.4, p<.01), a significant increase in reappraisal scores
(ERQ-R) (before: 28.7±1.2; after: 30.7±1.3; t=3.4, p=.04), and a
significant decrease in negative mood (PANAS-N) (before: 26.5±2.6;
after: 23.0±2.6; t=3.7, p<.01) (Fig. 2A; all one-tailed paired t-tests,
FWE-corrected). In contrast, thought suppression scores (ERQ-S) (be-
fore: 14.1±1.0; after: 14.1±1.4), positive mood scores ((PANAS-P)
before: 60.5±2.7; after: 60.4±3.0), and valence and arousal ratings
of emotional stimuli did not show significant differences after com-
pared to before the experiment (Fig. 2A and B; one-tailed paired t-tests,
p-values>.05). We also found that higher thought suppression scores
(ERQ-S) correlated negatively with activity level increases between
emotion regulation and passive viewing in the dmPFC (Fig. 2C;
rho=−0.50, adjusted p=.04, FDR correction, q<0.05) and in the
vmPFC (Fig. 2C, rho=−0.51, adjusted p=.04, FDR correction,
q<0.05).

3.3. Meta-analytic quantitative functional characterization

The final step in characterizing the ROIs in our study was to iden-
tify the psychological processes that these areas are associated with us

ing meta-analytic procedures and the BrainMap database. The activa-
tion clusters in the bilateral amygdala were predominantly associated
with the categories ‘Emotion’ and ‘Perception’ (Fig. S1). For the SFG
and vmPFC, the dominant category was ‘Emotion’, followed by ‘Cogni-
tion’. For the dmPFC and TPJ, the dominant category was ‘Cognition’,
followed by ‘Emotion’. For the paradigm classes, the activation clus-
ters in the bilateral amygdala were predominantly associated with ‘Ol-
factory Monitor/Discrimination’, ‘Classical Conditioning’ and ‘Affective
Pictures’ paradigms. The vmPFC was predominantly associated with
‘Competition/Cooperation’, ‘Reward’, and ‘Face Monitor/Discrimina-
tion’ paradigms. In contrast, both the dmPFC and the SFG were predom-
inantly associated with ‘Self-Reflection’, ‘Theory of Mind’, ‘Episodic Re-
call’ and ‘Emotion Induction’ paradigms. The TPJ was predominantly
associated with ‘Theory of Mind’ paradigms.

3.4. Connectivity underlying self-referential positive emotion regulation

Now that we have characterized the ROIs that are associated with
engaging oneself in positive emotion regulation, we turn towards the
key question about how these ROIs interact. To define an initial net-
work model of functional connectivity for our ROIs, we used MACM.
We found a strong overlap of the co-activation maps between seed SFG,
dmPFC, vmPFC and TPJ; between seed dmPFC, amygdala and vmPFC;
and between seed vmPFC and amygdala indicating that they are func-
tionally highly inter-connected (Fig. S2).

The next critical objective of our study was to formally assess the
effective network dynamics between the highly inter-connected ROIs
during positive-social emotion regulation using DCM. Given the activity
patterns (Fig. 1), the functional characteristics (Fig. S1), and the co-ac-
tivation maps (Fig. S2), this DCM analysis focused specifically on the in-
teractions between the TPJ, PFC, and amygdala, as well as on the func-
tional subdivisions of the PFC areas. We began by investigating which
network structure best explains our data during the passive viewing and
the emotion regulation conditions. During passive viewing, the high-
est model exceedance probability was observed for the model family
with direct connections between the TPJ and the other four ROIs, and
between the amygdala and the dmPFC, together with highly intercon-
nected prefrontal ROIs (Pe=.29, Figs. 3A and S3, model family 1). In
contrast, during emotion regulation, the dominant model family showed
that now the TPJ was not connected with the dmPFC, and the amygdala
was connected to the vmPFC (Pe=.44, Figs. 3A and S3, model family
7). Note that because in our experimental design, the image presenta-
tion and the task (i.e., passive viewing or emotion regulation) are in-
herently linked to one another, the external input can reflect either the
image presentation, the task, or both.

Fig. 2. Psychometric measures and post-hoc correlations between questionnaires and changes in brain activity. (A) Emotion regulation during the experiment resulted in a significant
increase in emotion regulation capability scores (ERQ-R), and a significant reduction in depression (BDI) and negative affect (PANAS-N) scores. (B) Valence and arousal ratings did not
change significantly. (C) Higher levels of thought suppression scores (ERQ-S) predicted lower levels of activity change in the dmPFC and vmPFC, indicating that individuals who suppress
their thoughts more showed weaker modulation of these regions during emotion regulation. ERQ-R – emotion regulation questionnaire-reappraisal, ERQ-S – emotion regulation question-
naire-suppression, PANAS-N – positive and negative affect schedule-negative, PANAS-P – positive and negative affect schedule-positive, dmPFC – dorsomedial prefrontal cortex, vmPFC –
ventromedial prefrontal cortex. * survived FDR correction for multiple comparisons (q<.05).



Finally, we compared different parameters of the models from the
winning model subfamilies using Bayesian model averaging (BMA).
During passive viewing, the TPJ, vmPFC and amygdala responded pos-
itively to the external input, while the SFG responded negatively (Fig.
3B). Overall, the ROIs are positively connected, except for the negative
connections from the amygdala to the TPJ. During emotion regulation,
the vmPFC, dmPFC, SFG and TPJ responded positively to the external
input (Fig. 3C). The vmPFC and especially the SFG showed both positive
connection strengths onto the TPJ and dmPFC. The vmPFC showed posi-
tive connection strengths to the bilateral amygdala. Furthermore, during
engaging oneself in positive emotion regulation, the dmPFC decreased
the responsiveness of the vmPFC as indicated by a negative connection
strength. Taken together, these findings reveal distinct modes of inter-
actions between prefrontal, temporoparietal and limbic regions during
self-engaged positive emotion regulation.

4. Discussion

Previous studies of emotion regulation have focused predominantly
on reducing negative emotions through the use of cognitive strategies
like reappraisal and detachment (Ochsner et al., 2012). The regula-
tion of emotions by positive appraisal and explicitly engaging oneself
in positive-social emotions has received far less attention, despite the
fact that positive emotions facilitate cognitive performance, creativity,
and social bounds (Carpenter et al., 2013; Nadler et al., 2010). Posi-
tive emotions are also a key component of healthy mood regulation, and

they are distinctly impaired in clinical disorders such as depression and
anxiety (Carpenter et al., 2013; Disner et al., 2011; Nadler et al., 2010;
Treadway and Zald, 2011). Understanding the mechanism and impact of
first-person projections for positive-social emotion regulation are impor-
tant as they are known to constitute an effective strategy in therapeu-
tic settings (Buckner and Carroll, 2007; Holmes et al., 2008). Here, we
combined neuroimaging measures with quantitative functional charac-
terization of the activated areas, meta-analytic and model-driven analy-
ses of brain connectivity to shed light on the dynamics of brain networks
mediating the engagement of oneself in the cognitive regulation of pos-
itive-social emotions. We also related these processes to individual dif-
ference in affective experience and thought control abilities.

Our results revealed that self-referential positive-social emotion reg-
ulation recruited a distributed network of prefrontal, temporoparietal,
and limbic brain areas. Remarkably, this network was identified
through converging evidence from two complementary approaches to
studying brain connectivity, namely, meta-analytic functional connec-
tivity analysis using MACM (Fig. S2) and specific model-based effective
connectivity analysis using DCM (Figs. 3 and 4). While the regions that
comprise this network have previously been shown to be involved in re-
lated emotion regulation paradigms (Braunstein et al., 2017; Reeck et
al., 2016), we additionally provide a quantitative functional characteri-
zation of these regions (Fig. S1) and information about how they effec-
tively interact in a network (Figs. 3 and 4). Integrating these comple-
mentary results, we found that during engaging oneself in positive-so-
cial emotions, cognitive control processes originate primarily in the

Fig. 3. Network architecture, external inputs and model parameters. (A) The winning model family for the passive viewing and for the emotion regulation conditions are highlighted in 
blue and orange, respectively. The ROIs are denoted as yellow nodes. The reciprocal connections (matrix A in DCM) and the modulatory inputs (matrix B in DCM) between the ROIs are 
depicted as arrows between the ROIs, and the external inputs as arrows into them. The exceedance family probabilities revealed that during passive viewing the model family with direct 
connections between the TPJ and the other four ROIs, and between the amygdala and the dmPFC (model family 1; blue arrow; panel B) dominated. In contrast, during emotion 
regulation, the highest model exceedance probability was observed for the model family where the TPJ was not connected with the dmPFC, and the amygdala was connected to the vmPFC 
(model family 7; orange arrow; panel C). The numbers indicate the weighted average of each model parameter within the winning model subfamily which is also indicated by the 
thickness of the arrows (green for positive values and red for negative). TPJ – temporoparietal junction, SFG – superior frontal gyrus, dmPFC – dorsomedial prefrontal cortex, vmPFC – 
ventromedial prefrontal cortex, AMY – amygdala. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)



Fig. 4. Combining brain activations, functional profiles and complementary functional and effective connectivity analyses in a model for engaging oneself in positive-social emotion regu-
lation. The network model is driven by external inputs into the SFG and vmPFC. The emotional response in the amygdala is modulated via the vmPFC and TPJ. The dmPFC decreased the
responsiveness of the vmPFC as indicated by a negative connection strength. Proportionally scaled arrows indicate how information flows between brain regions (we summed up intrinsic
connectivity values and their modulations for illustration purposes, Fig. 3C). Colors indicate processes related to either engaging oneself (yellow), cognitive control (blue), affective valu-
ation (green), or emotional response (red). TPJ – temporoparietal junction, SFG – superior frontal gyrus, dmPFC – dorsomedial prefrontal cortex, vmPFC – ventromedial prefrontal cortex,
AMY –amygdala. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

SFG (Fig. 4). The SFG then influences the TPJ which is associated with
engaging oneself, the dmPFC which mediates cognitive control over the
emotional response, and the vmPFC which serves mainly the affective
valuation. The affective valuation of the vmPFC is also strongly mod-
ulated by the dmPFC, and by inputs from the amygdala as well as the
TPJ, which are related to the emotional response and engaging oneself,
respectively.

We found significant activation of the left TPJ in the interaction
stimuli×task, which was driven by the fact that the TPJ responded par-
ticularly strongly to engaging in positive-social scenes. The TPJ has been
shown to be associated with self-referential perspective taking (Saxe and
Kanwisher, 2003), assessment of the emotional states in social situa-
tions (Buckner and Carroll, 2007; Reeck et al., 2016; Zaki and Ochsner,
2012), bodily self-location and self-consciousness (Ionta et al., 2014).
These descriptions match the meta-analytic functional profile of the TPJ
activations in our study, which were predominantly ‘Cognition’ and
‘Theory of Mind’ (Fig. S1). Also, the lateralization of our findings is
echoed by previous findings. For example, the left TPJ is more strongly
connected to the executive control network and in particular the dmPFC
(Kucyi et al., 2012), and activity especially in the left TPJ is associ-
ated with reasoning about the beliefs of others (Samson et al., 2004),
abstract semantic representations (Skipper-Kallal et al., 2015) and cre-
ativity (Mayseless et al., 2014). Hence, our results suggest that activity
in the left TPJ is predominantly related to self-referential engagement,
which was more effectively maintained in the context of positive-social
scenes.

Interestingly, the observed modulation of functional activity and
connectivity within prefrontal-temporoparietal-amygdala circuits was
affected by individual characteristics that reflect emotion regulation
competences and mood. We found that participants who favor emotion
suppression strategies showed a weaker activation of the dmPFC and
vmPFC when they engaged in positive emotions (Fig. 2C). This sug-
gests that suppression strategies to regulate emotions may negatively
impact on regulation processes that are crucial for successfully engag

ing in positive-social emotions. Suppression strategies have indeed been
shown to be less efficient (the white bear effect) and less beneficial than
cognitive strategies based on reappraisal (Hu et al., 2014). In fact, emo-
tion suppression might even be counterproductive and increase stressful
experiences (Gross, 2002).

An interesting result is the functional specialization of the ventral
and medial prefrontal areas, TPJ and the SFG. The SFG was the only
brain area that was recruited selectively during emotion regulation in
a first-person perspective, irrespective of whether positive or neutral
scenes were presented. Also, our meta-analytic functional characteriza-
tion points to a key role of TPJ, dmPFC and SFG regions in cognitive
control, as these areas were most strongly associated with the psycho-
logical category ‘Cognition’ and ‘Social Cognition’ (Fig. S1). This re-
sult accords well with imagined self-referential engagement of our par-
ticipants during regulation and the social content of our stimuli. Fur-
thermore, our connectivity analyses demonstrated that the SFG is cen-
trally involved in top-down cognitive control processes as it responded
strongly to inputs during emotion regulation, and modulated activity
of the dmPFC, vmPFC and TPJ (Figs. 3 and 4). Accordingly, the SFG
was also associated with the psychological categories ‘Emotion’ and
‘Cognition’ (Fig. S1). The SFG and dmPFC have previously been re-
ported to mediate cognitive control during social-emotional appraisal
and introspection (Goldberg et al., 2006; Ochsner and Gross, 2008). The
dmPFC is also frequently engaged when evaluating social information
(Amodio and Frith, 2006; Bzdok et al., 2013; Vrticka et al., 2012), sit-
uating oneself in social contexts (Amodio and Frith, 2006; Gusnard et
al., 2001), and maintaining a goal-relevant regulation strategy (Gusnard
et al., 2001). Unlike the SFG, the dmPFC and the vmPFC were not dif-
ferentially recruited during regulation but responded mainly to the pre-
sentation of positive images (Figs. 3 and 4, Table 1). However, whereas
the dmPFC and TPJ were primarily associated with the with ‘Self-re-
flection’ and ‘Theory of Mind’ paradigms, the vmPFC was associated
with ‘Competition/Cooperation’, ‘Reward’ and ‘Face Monitor/Discrim-
ination’ paradigms (Fig. S1). It thus seems likely that the vmPFC is cru



cially involved in stimulus valuation, or integrating the affective mean-
ing of external stimuli with cognitive goals and/or internal represen-
tations. In line with this, previous neuroimaging and electrophysiology
studies suggest that activity in the vmPFC is closely linked to behav-
ioral measures of subjective value (Baumgartner et al., 2011; Kim and
Hamann, 2007; Roy et al., 2012), and to the processing of social stim-
uli (Vrticka et al., 2012). This also accords well with the unique pattern
of connectivity of the vmPFC to brain structures related to memory, re-
ward, goal formation, and theory of mind (notably, the dmPFC), and to
the subcortical autonomic structures like the hypothalamus and amyg-
dala, which further suggests a crucial role of the vmPFC in affective val-
uation (Gusnard et al., 2001).

4.1. Limitations

Here we focused on engaging oneself in positive-social emotions.
While this is a realistic scenario of therapeutic relevance, the current de-
sign does not allow for isolating these key aspects of emotion regulation
(i.e., self-referential, social situations). This has been done elsewhere
(e.g., (Vrticka et al., 2012)). Also, our study does not cover all aspects of
engaging in positive emotion regulation. For example, Admon and Pizzi-
galli induced positive mood using humoristic cartoons which activated
regions not involved in our network analyses such as the ventral stria-
tum (Admon and Pizzagalli, 2015). Future studies might shed light on
variants of positive emotion regulation and can potentially include more
ROIs for more extensive network analyses. Novel DCM methods such
as Bayesian model reduction (BMR) allow for computationally efficient
estimation of even large network models that are in good agreement
with the more conventional DCM approach applied in the present study
(Friston et al., 2011, 2016; Litvak et al., 2015; Rosa et al., 2012; Seghier
and Friston, 2013). Another interesting extension of our study would be
the direct comparison between positive and negative emotion regula-
tion. Our study revealed that positive emotion regulation recruited a dis-
tributed cortico-limbic network that overlaps with that involved in regu-
lating negative emotions (Kim and Hamann, 2007; Ochsner et al., 2012;
Vrticka et al., 2012), but does not allow for directly contrasting these
two conditions. These future extensions will also provide important in-
formation regarding the reproducibility of the present findings and fur-
ther contribute to consolidating a coherent understanding of emotion
regulation. Future studies might also include more diverse participant
populations to assess if the present results generalize beyond the popu-
lation included in this study (which consisted predominantly of young
students and researchers).

Finally, we used a multimodal approach that consisted of comple-
mentary meta-analytic (e.g., functional profiling and MACM connectiv-
ity analysis) as well as study-population-specific analyses (e.g., brain ac-
tivations, DCM, questionnaires). The integration of these diverse mea-
sures is clearly complex and leaves scope for interpretation. Neverthe-
less, the different results do inform each other in that, for example, the
meta-analytic functional profiling confirms that the study-specific brain
activations are task relevant and the meta-analytic functional connectiv-
ity analysis informs which network should undergo study-specific effec-
tive connectivity analysis using DCM(Koush et al., 2019). Also, we tried
combining the results we obtained to provide an integrated framework
based on quantitative measures.

4.2. Conclusion

To better understand the neural underpinnings of positive emotion
regulation in lifelike scenarios that include a self-referential perspective
and social situations, we provided insights from complementary analy-
ses including brain activations, meta-analytic functional characteriza-
tion, functional and effective brain connectivity, and personality ques-
tionnaires. While there is considerable overlap between the brain re

gions involved in our task and related other designs, we aimed at inte-
grating our converging results to describe the function and the dynamic
interactions between these regions. We hope that our model of engaging
oneself in positive-social emotions in healthy participants can help to
identify changes in brain dynamics that prevent positive emotions in pa-
tients suffering from anxiety and mood disorders. Neurofeedback train-
ing (Sitaram et al., 2017) may then even be applied to normalize abnor-
mal brain networks in these patients (Koush et al., 2013, 2015, 2017a,
2017b).
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