000859079 001__ 859079
000859079 005__ 20210130000156.0
000859079 0247_ $$2doi$$a10.1109/LED.2017.2734943
000859079 0247_ $$2ISSN$$a0741-3106
000859079 0247_ $$2ISSN$$a1558-0563
000859079 0247_ $$2WOS$$aWOS:000413760600033
000859079 037__ $$aFZJ-2019-00030
000859079 082__ $$a620
000859079 1001_ $$0P:(DE-HGF)0$$aSaeidi, Ali$$b0$$eCorresponding author
000859079 245__ $$aNegative Capacitance as Performance Booster for Tunnel FETs and MOSFETs: An Experimental Study
000859079 260__ $$aNew York, NY$$bIEEE$$c2017
000859079 3367_ $$2DRIVER$$aarticle
000859079 3367_ $$2DataCite$$aOutput Types/Journal article
000859079 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547480187_23129
000859079 3367_ $$2BibTeX$$aARTICLE
000859079 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859079 3367_ $$00$$2EndNote$$aJournal Article
000859079 520__ $$aThis letter reports for the first time a full experimental study of performance boosting of tunnel FETs (TFETs) and MOSFETs by negative capacitance (NC) effect. We discuss the importance of capacitance matching between a ferroelectric NC and a device capacitance to achieve hysteretic and non-hysteretic characteristics. PZT ferroelectric capacitors are connected to the gate of three terminals TFETs and MOSFETs and partial or full matching NC conditions for amplification and stability are obtained. First, we demonstrate the characteristics of hysteretic and non-hysteretic NC-TFETs. The main performance boosting is obtained for the non-hysteretic NC-TFET, where the ON-current is increased by a factor of 500 times, transconductance is enhanced by three orders of magnitude, and the low slope region is extended. The boosting of performance is moderate in the hysteretic NC-TFET. Second, we investigate the impact of the same NC booster on MOSFETs. Subthreshold swing as steep as 4 mV/decade with a 1.5-V hysteresis is obtained on a commercial device fabricated in 28-nm CMOS technology. Moreover, we demonstrate a non-hysteretic NC-MOSFET with a full matching of capacitances and a reduced subthreshold swing down to 20 mV/decade.
000859079 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000859079 588__ $$aDataset connected to CrossRef
000859079 7001_ $$0P:(DE-HGF)0$$aJazaeri, Farzan$$b1
000859079 7001_ $$0P:(DE-HGF)0$$aBellando, Francesco$$b2
000859079 7001_ $$0P:(DE-HGF)0$$aStolichnov, Igor$$b3
000859079 7001_ $$0P:(DE-HGF)0$$aLuong, Gia V.$$b4
000859079 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b5$$eCollaboration author
000859079 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b6$$ufzj
000859079 7001_ $$0P:(DE-HGF)0$$aEnz, Christian C.$$b7
000859079 7001_ $$0P:(DE-HGF)0$$aIonescu, Adrian M.$$b8
000859079 773__ $$0PERI:(DE-600)2034325-5$$a10.1109/LED.2017.2734943$$gVol. 38, no. 10, p. 1485 - 1488$$n10$$p1485 - 1488$$tIEEE electron device letters$$v38$$x1558-0563$$y2017
000859079 8564_ $$uhttps://juser.fz-juelich.de/record/859079/files/08000343.pdf$$yRestricted
000859079 8564_ $$uhttps://juser.fz-juelich.de/record/859079/files/08000343.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859079 909CO $$ooai:juser.fz-juelich.de:859079$$pVDB
000859079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000859079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b5$$kFZJ
000859079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b6$$kFZJ
000859079 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000859079 9141_ $$y2018
000859079 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE ELECTR DEVICE L : 2017
000859079 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859079 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859079 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859079 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859079 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859079 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000859079 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859079 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000859079 980__ $$ajournal
000859079 980__ $$aVDB
000859079 980__ $$aI:(DE-Juel1)PGI-9-20110106
000859079 980__ $$aUNRESTRICTED