000859082 001__ 859082
000859082 005__ 20210130000157.0
000859082 0247_ $$2doi$$a10.23919/SNW.2017.8242270
000859082 037__ $$aFZJ-2019-00033
000859082 1001_ $$0P:(DE-HGF)0$$aSaeidi, A.$$b0$$eCorresponding author
000859082 1112_ $$a2017 Silicon Nanoelectronics Workshop (SNW)$$cKyoto$$d2017-06-04 - 2017-06-05$$wJapan
000859082 245__ $$aNegative capacitance tunnel F£Ts: Experimental demonstration of outstanding simultaneous boosting of on-current, transconductance, overdrive, and swing
000859082 260__ $$bIEEE$$c2017
000859082 300__ $$a7-8
000859082 3367_ $$2ORCID$$aCONFERENCE_PAPER
000859082 3367_ $$033$$2EndNote$$aConference Paper
000859082 3367_ $$2BibTeX$$aINPROCEEDINGS
000859082 3367_ $$2DRIVER$$aconferenceObject
000859082 3367_ $$2DataCite$$aOutput Types/Conference Paper
000859082 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1547562069_18954
000859082 520__ $$aThis paper demonstrates and experimentally reports the highest ever performance boosting in strained silicon-nanowire homojunction TFETs with negative capacitance, provided by matched PZT capacitors. Outstanding enhancements of I on , g m , and overdrive are analyzed and explained by most effective reduction of body factor, m <; 1, especially for V G >V T , which greatly amplify the control on the surface potential TFET, which dictates a highly non-linear BTBT regime. We achieve a full non-hysteretic negative-capacitance switch configuration, suitable for logic applications, and report non-current increase by a factor of 500x, voltage overdrive of IV, transconductance increase of up to 5× 10 3 x, and subthreshold swing improvement.
000859082 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000859082 588__ $$aDataset connected to CrossRef Conference
000859082 7001_ $$0P:(DE-HGF)0$$aJazaeri, F.$$b1
000859082 7001_ $$0P:(DE-HGF)0$$aStolichnov, I.$$b2
000859082 7001_ $$0P:(DE-HGF)0$$aLuong, G. V.$$b3
000859082 7001_ $$0P:(DE-Juel1)128649$$aZhao, Q. T.$$b4$$eCollaboration author
000859082 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b5
000859082 7001_ $$0P:(DE-HGF)0$$aIonescu, Adrian M.$$b6
000859082 773__ $$a10.23919/SNW.2017.8242270
000859082 8564_ $$uhttps://juser.fz-juelich.de/record/859082/files/08242270.pdf$$yRestricted
000859082 8564_ $$uhttps://juser.fz-juelich.de/record/859082/files/08242270.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859082 909CO $$ooai:juser.fz-juelich.de:859082$$pVDB
000859082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000859082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b4$$kFZJ
000859082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b5$$kFZJ
000859082 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000859082 9141_ $$y2018
000859082 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000859082 980__ $$acontrib
000859082 980__ $$aVDB
000859082 980__ $$aI:(DE-Juel1)PGI-9-20110106
000859082 980__ $$aUNRESTRICTED