001     859086
005     20210130000158.0
010 _ _ |a
020 _ _ |a 978-1-5090-5313-1
020 _ _ |a 9781509053148 (print)
024 7 _ |a 10.1109/ULIS.2017.7962575
|2 doi
037 _ _ |a FZJ-2019-00037
041 _ _ |a English
100 1 _ |a Liu, Linjie
|0 P:(DE-Juel1)145655
|b 0
111 2 _ |a 2017 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)
|c Athens
|d 2017-04-03 - 2017-04-05
|w Greece
245 _ _ |a Analog and RF analysis of gate all around silicon nanowire MOSFETs
260 _ _ |a [Piscataway, NJ]
|c 2017
|b IEEE
300 _ _ |a 1-4
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1547554483_20785
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Gate all around (GAA) nanowire MOSFETs with gate length of 130 nm were fabricated on SOI wafers. The analog performance was analyzed in terms of transconductance, output conductance, voltage gain, Early voltage and transconductance efficiency. The RF characterization showed relatively low cutoff frequency and maximum oscillation frequency. Small-signal parameters are extracted using cold FET method combined with an optimization procedure called Artificial Bee Colony (ABC) method. It proves that large parasitic capacitance and high RF output conductance are the main reasons for the degraded RF performance.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Han, Qinghua
|0 P:(DE-Juel1)165600
|b 1
|u fzj
700 1 _ |a Makovejev, Sergej
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Trellenkamp, Stefan
|0 P:(DE-Juel1)128856
|b 3
|u fzj
700 1 _ |a Raskin, Jean-Pierre
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mantl, Siegfried
|0 P:(DE-Juel1)128609
|b 5
|u fzj
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 6
|e Corresponding author
773 _ _ |a 10.1109/ULIS.2017.7962575
856 4 _ |u https://juser.fz-juelich.de/record/859086/files/07962575.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:859086
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165600
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128649
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)HNF-20170116
|k HNF
|l Helmholtz - Nanofacility
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)HNF-20170116
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21