000859087 001__ 859087
000859087 005__ 20210130000158.0
000859087 0247_ $$2doi$$a10.1109/ULIS.2017.7962584
000859087 037__ $$aFZJ-2019-00038
000859087 1001_ $$0P:(DE-HGF)0$$aFarokhnejad, A.$$b0$$eCorresponding author
000859087 1112_ $$a2017 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)$$cAthens$$d2017-04-03 - 2017-04-05$$wGreece
000859087 245__ $$aCompact modeling of intrinsic capacitances in Double-Gate Tunnel-FETs
000859087 260__ $$bIEEE$$c2017
000859087 300__ $$a1-4
000859087 3367_ $$2ORCID$$aCONFERENCE_PAPER
000859087 3367_ $$033$$2EndNote$$aConference Paper
000859087 3367_ $$2BibTeX$$aINPROCEEDINGS
000859087 3367_ $$2DRIVER$$aconferenceObject
000859087 3367_ $$2DataCite$$aOutput Types/Conference Paper
000859087 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1547560091_9151
000859087 520__ $$aIn this paper a compact model for intrinsic capacitances for Tunnel field-effect transistors (TFETs) is presented. The model is derived from the carrier concentration and current flowing the channel of a Si Double-Gate (DG) n-type TFET. It represents a particularly good estimation of TFET capacitances and the flexibility of this model makes it possible to apply it for single-gate or p-type TFETs as well. To verify the model, the results are compared with TCAD Sentaurus simulations as well as measurement data. In both case model shows satisfying results.
000859087 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000859087 588__ $$aDataset connected to CrossRef Conference
000859087 7001_ $$0P:(DE-HGF)0$$aGraef, M.$$b1
000859087 7001_ $$0P:(DE-HGF)0$$aHorst, F.$$b2
000859087 7001_ $$0P:(DE-HGF)0$$aLiu, C.$$b3
000859087 7001_ $$0P:(DE-Juel1)128649$$aZhao, Q. T.$$b4$$eCollaboration author
000859087 7001_ $$0P:(DE-HGF)0$$aIniguez, B.$$b5
000859087 7001_ $$0P:(DE-HGF)0$$aLime, F.$$b6
000859087 7001_ $$0P:(DE-HGF)0$$aKloes, A.$$b7
000859087 773__ $$a10.1109/ULIS.2017.7962584
000859087 8564_ $$uhttps://juser.fz-juelich.de/record/859087/files/07962584.pdf$$yRestricted
000859087 8564_ $$uhttps://juser.fz-juelich.de/record/859087/files/07962584.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859087 909CO $$ooai:juser.fz-juelich.de:859087$$pVDB
000859087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000859087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b4$$kFZJ
000859087 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000859087 9141_ $$y2018
000859087 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000859087 980__ $$acontrib
000859087 980__ $$aVDB
000859087 980__ $$aI:(DE-Juel1)PGI-9-20110106
000859087 980__ $$aUNRESTRICTED