000859106 001__ 859106
000859106 005__ 20240712113104.0
000859106 0247_ $$2doi$$a10.3390/batteries4040062
000859106 0247_ $$2Handle$$a2128/23491
000859106 0247_ $$2WOS$$aWOS:000455148900015
000859106 037__ $$aFZJ-2019-00050
000859106 082__ $$a530
000859106 1001_ $$0P:(DE-Juel1)173730$$aSmiatek, Jens$$b0$$eCorresponding author
000859106 245__ $$aProperties of Ion Complexes and Their Impact on Charge Transport in Organic Solvent-Based Electrolyte Solutions for Lithium Batteries: Insights from a Theoretical Perspective
000859106 260__ $$aBasel$$bMDPI282894$$c2018
000859106 3367_ $$2DRIVER$$aarticle
000859106 3367_ $$2DataCite$$aOutput Types/Journal article
000859106 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575007647_25885
000859106 3367_ $$2BibTeX$$aARTICLE
000859106 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859106 3367_ $$00$$2EndNote$$aJournal Article
000859106 520__ $$aElectrolyte formulations in standard lithium ion and lithium metal batteries are complex mixtures of various components. In this article, we review molecular key principles of ion complexes in multicomponent electrolyte solutions in regards of their influence on charge transport mechanisms. We outline basic concepts for the description of ion–solvent and ion–ion interactions, which can be used to rationalize recent experimental and numerical findings concerning modern electrolyte formulations. Furthermore, we discuss benefits and drawbacks of empirical concepts in comparison to molecular theories of solution for a more refined understanding of ion behavior in organic solvents. The outcomes of our discussion provide a rational for beneficial properties of ions, solvent, co-solvent and additive molecules, and highlight possible routes for further improvement of novel electrolyte solutions.
000859106 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000859106 588__ $$aDataset connected to CrossRef
000859106 7001_ $$0P:(DE-Juel1)176646$$aHeuer, Andreas$$b1$$ufzj
000859106 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$ufzj
000859106 773__ $$0PERI:(DE-600)2813972-0$$a10.3390/batteries4040062$$gVol. 4, no. 4, p. 62 -$$n4$$p62$$tBatteries$$v4$$x2313-0105$$y2018
000859106 8564_ $$uhttps://juser.fz-juelich.de/record/859106/files/batteries-04-00062.pdf$$yOpenAccess
000859106 8564_ $$uhttps://juser.fz-juelich.de/record/859106/files/batteries-04-00062.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859106 909CO $$ooai:juser.fz-juelich.de:859106$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000859106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173730$$aForschungszentrum Jülich$$b0$$kFZJ
000859106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176646$$aForschungszentrum Jülich$$b1$$kFZJ
000859106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
000859106 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000859106 9141_ $$y2019
000859106 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859106 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000859106 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000859106 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000859106 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000859106 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859106 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000859106 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859106 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000859106 9801_ $$aFullTexts
000859106 980__ $$ajournal
000859106 980__ $$aVDB
000859106 980__ $$aUNRESTRICTED
000859106 980__ $$aI:(DE-Juel1)IEK-12-20141217
000859106 981__ $$aI:(DE-Juel1)IMD-4-20141217