000859106 001__ 859106 000859106 005__ 20240712113104.0 000859106 0247_ $$2doi$$a10.3390/batteries4040062 000859106 0247_ $$2Handle$$a2128/23491 000859106 0247_ $$2WOS$$aWOS:000455148900015 000859106 037__ $$aFZJ-2019-00050 000859106 082__ $$a530 000859106 1001_ $$0P:(DE-Juel1)173730$$aSmiatek, Jens$$b0$$eCorresponding author 000859106 245__ $$aProperties of Ion Complexes and Their Impact on Charge Transport in Organic Solvent-Based Electrolyte Solutions for Lithium Batteries: Insights from a Theoretical Perspective 000859106 260__ $$aBasel$$bMDPI282894$$c2018 000859106 3367_ $$2DRIVER$$aarticle 000859106 3367_ $$2DataCite$$aOutput Types/Journal article 000859106 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575007647_25885 000859106 3367_ $$2BibTeX$$aARTICLE 000859106 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000859106 3367_ $$00$$2EndNote$$aJournal Article 000859106 520__ $$aElectrolyte formulations in standard lithium ion and lithium metal batteries are complex mixtures of various components. In this article, we review molecular key principles of ion complexes in multicomponent electrolyte solutions in regards of their influence on charge transport mechanisms. We outline basic concepts for the description of ion–solvent and ion–ion interactions, which can be used to rationalize recent experimental and numerical findings concerning modern electrolyte formulations. Furthermore, we discuss benefits and drawbacks of empirical concepts in comparison to molecular theories of solution for a more refined understanding of ion behavior in organic solvents. The outcomes of our discussion provide a rational for beneficial properties of ions, solvent, co-solvent and additive molecules, and highlight possible routes for further improvement of novel electrolyte solutions. 000859106 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000859106 588__ $$aDataset connected to CrossRef 000859106 7001_ $$0P:(DE-Juel1)176646$$aHeuer, Andreas$$b1$$ufzj 000859106 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$ufzj 000859106 773__ $$0PERI:(DE-600)2813972-0$$a10.3390/batteries4040062$$gVol. 4, no. 4, p. 62 -$$n4$$p62$$tBatteries$$v4$$x2313-0105$$y2018 000859106 8564_ $$uhttps://juser.fz-juelich.de/record/859106/files/batteries-04-00062.pdf$$yOpenAccess 000859106 8564_ $$uhttps://juser.fz-juelich.de/record/859106/files/batteries-04-00062.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000859106 909CO $$ooai:juser.fz-juelich.de:859106$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000859106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173730$$aForschungszentrum Jülich$$b0$$kFZJ 000859106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176646$$aForschungszentrum Jülich$$b1$$kFZJ 000859106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ 000859106 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000859106 9141_ $$y2019 000859106 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000859106 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000859106 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000859106 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index 000859106 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000859106 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000859106 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review 000859106 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000859106 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000859106 9801_ $$aFullTexts 000859106 980__ $$ajournal 000859106 980__ $$aVDB 000859106 980__ $$aUNRESTRICTED 000859106 980__ $$aI:(DE-Juel1)IEK-12-20141217 000859106 981__ $$aI:(DE-Juel1)IMD-4-20141217