001     859113
005     20240711114058.0
024 7 _ |a 10.1016/j.nme.2018.12.008
|2 doi
024 7 _ |a 2128/21166
|2 Handle
024 7 _ |a WOS:000460107500013
|2 WOS
037 _ _ |a FZJ-2019-00055
082 _ _ |a 624
100 1 _ |a Nishijima, D.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Influence of heavier impurity deposition on surface morphology development and sputtering behavior explored in multiple linear plasma devices
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547480983_19393
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Surface morphology development and sputtering behavior of Cr, as a test material, have been explored under He plasma exposure at a low incident ion energy of ∼80 eV in multiple linear plasma devices: PISCES-A, PSI-2, and NAGDIS-II. From comparison of the experiments in these devices, deposition of a small amount of heavier impurities (Mo in NAGDIS-II and Ta in PISCES-A) onto Cr is found to result in the formation of cone structures on the Cr surface due to preferential sputtering, resulting in a significant reduction (up to ∼10 times) in the sputtering yield of Cr due to line-of-sight redeposition onto the neighboring cones. The heavier impurities are thought to originate from a sample holding cap/cover, which can be sputtered by a trace amount of intrinsic impurities (C, O, etc) as well as by Cr ionized in the plasma. It can be concluded from the Cr experiments, as well as additional Be data collected in PISCES-B, that heavier impurity deposition plays a major role in the cone structure formation, while other mechanisms (e.g. surface irregularity and oxide) also exist.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 1
700 1 _ |a Baldwin, M. J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Borodin, D.
|0 P:(DE-Juel1)7884
|b 3
700 1 _ |a Eksaeva, A.
|0 P:(DE-Juel1)171509
|b 4
|u fzj
700 1 _ |a Hwangbo, D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kajita, S.
|0 0000-0003-0543-5241
|b 6
700 1 _ |a Miyamoto, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ohno, N.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Patino, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Pospieszczyk, A.
|0 P:(DE-Juel1)130122
|b 10
|u fzj
700 1 _ |a Rasinski, M.
|0 P:(DE-Juel1)162160
|b 11
|u fzj
700 1 _ |a Schlummer, T.
|0 P:(DE-Juel1)130142
|b 12
700 1 _ |a Terra, A.
|0 P:(DE-Juel1)130166
|b 13
|u fzj
700 1 _ |a Doerner, R. P.
|0 P:(DE-HGF)0
|b 14
773 _ _ |a 10.1016/j.nme.2018.12.008
|g Vol. 18, p. 67 - 71
|0 PERI:(DE-600)2808888-8
|p 67 - 71
|t Nuclear materials and energy
|v 18
|y 2019
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859113/files/1-s2.0-S2352179118300619-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859113/files/1-s2.0-S2352179118300619-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859113
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)7884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171509
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130166
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21