000859132 001__ 859132
000859132 005__ 20220930130204.0
000859132 0247_ $$2doi$$a10.1038/s41598-019-38506-w
000859132 0247_ $$2Handle$$a2128/21755
000859132 0247_ $$2pmid$$apmid:30760789
000859132 0247_ $$2altmetric$$aaltmetric:56227291
000859132 037__ $$aFZJ-2019-00068
000859132 082__ $$a600
000859132 1001_ $$0P:(DE-Juel1)161196$$aMenzel, Miriam$$b0$$eCorresponding author
000859132 245__ $$aDiattenuation Imaging reveals different brain tissue properties
000859132 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000859132 3367_ $$2DRIVER$$aarticle
000859132 3367_ $$2DataCite$$aOutput Types/Journal article
000859132 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620717790_31293
000859132 3367_ $$2BibTeX$$aARTICLE
000859132 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859132 3367_ $$00$$2EndNote$$aJournal Article
000859132 520__ $$aWhen transmitting polarised light through histological brain sections, different types of diattenuation (polarisation-dependent attenuation of light) can be observed: In some brain regions, the light is minimally attenuated when it is polarised parallel to the nerve fibres (referred to as D+), in others, it is maximally attenuated (referred to as D-). The underlying mechanisms of these effects and their relationship to tissue properties were so far unknown. Here, we demonstrate in experimental studies that diattenuation of both types D+ and D- can be observed in brain tissue samples from different species (rodent, monkey, and human) and that the strength and type of diattenuation depend on the nerve fibre orientations. By combining finite-difference time-domain simulations and analytical modelling, we explain the observed diattenuation effects and show that they are caused both by anisotropic absorption (dichroism) and by anisotropic light scattering. Our studies demonstrate that the diattenuation signal depends not only on the nerve fibre orientations but also on other brain tissue properties like tissue homogeneity, fibre size, and myelin sheath thickness. This allows to use the diattenuation signal to distinguish between brain regions with different tissue properties and establishes Diattenuation Imaging as a valuable imaging technique.
000859132 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000859132 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000859132 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000859132 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000859132 536__ $$0G:(DE-Juel1)jjsc24_20150501$$aSIMULATIONS FOR THE RECONSTRUCTION OF NERVE FIBERS BY 3D POLARIZED LIGHT IMAGING (jjsc24_20150501)$$cjjsc24_20150501$$fSIMULATIONS FOR THE RECONSTRUCTION OF NERVE FIBERS BY 3D POLARIZED LIGHT IMAGING$$x4
000859132 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x5
000859132 536__ $$0G:(DE-Juel1)jjsc43_20181101$$aSimulations for a better Understanding of the Impact of Different Brain Tissue Components on 3D Polarized Light Imaging (jjsc43_20181101)$$cjjsc43_20181101$$fSimulations for a better Understanding of the Impact of Different Brain Tissue Components on 3D Polarized Light Imaging$$x6
000859132 588__ $$aDataset connected to CrossRef
000859132 7001_ $$0P:(DE-Juel1)131632$$aAxer, Markus$$b1
000859132 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b2
000859132 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b3$$ufzj
000859132 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b4
000859132 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-38506-w$$gVol. 9, no. 1, p. 1939$$n1$$p1939$$tScientific reports$$v9$$x2045-2322$$y2019
000859132 8564_ $$uhttps://juser.fz-juelich.de/record/859132/files/30036479650008689339INVOIC2676131344001.pdf
000859132 8564_ $$uhttps://juser.fz-juelich.de/record/859132/files/30036479650008689339INVOIC2676131344001.pdf?subformat=pdfa$$xpdfa
000859132 8564_ $$uhttps://juser.fz-juelich.de/record/859132/files/s41598-019-38506-w.pdf$$yOpenAccess
000859132 8564_ $$uhttps://juser.fz-juelich.de/record/859132/files/s41598-019-38506-w.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859132 8767_ $$82676131344$$92019-01-02$$d2019-01-07$$eAPC$$jZahlung erfolgt$$pSREP-18-30774A
000859132 909CO $$ooai:juser.fz-juelich.de:859132$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000859132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161196$$aForschungszentrum Jülich$$b0$$kFZJ
000859132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131632$$aForschungszentrum Jülich$$b1$$kFZJ
000859132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b2$$kFZJ
000859132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b3$$kFZJ
000859132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b4$$kFZJ
000859132 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000859132 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000859132 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000859132 9141_ $$y2019
000859132 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859132 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000859132 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000859132 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859132 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000859132 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000859132 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000859132 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000859132 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859132 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859132 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859132 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859132 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859132 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859132 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859132 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859132 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859132 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000859132 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859132 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000859132 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000859132 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000859132 980__ $$ajournal
000859132 980__ $$aVDB
000859132 980__ $$aI:(DE-Juel1)INM-1-20090406
000859132 980__ $$aI:(DE-Juel1)JSC-20090406
000859132 980__ $$aI:(DE-82)080012_20140620
000859132 980__ $$aAPC
000859132 980__ $$aUNRESTRICTED
000859132 9801_ $$aAPC
000859132 9801_ $$aFullTexts