001     859189
005     20220930130204.0
024 7 _ |a 10.1029/2018WR023067
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2128/21110
|2 Handle
024 7 _ |a WOS:000453369400043
|2 WOS
024 7 _ |a altmetric:54172895
|2 altmetric
037 _ _ |a FZJ-2019-00079
082 _ _ |a 550
100 1 _ |a Tang, Qi
|0 P:(DE-Juel1)156219
|b 0
|e Corresponding author
245 _ _ |a Simulating Flood-Induced Riverbed Transience Using Unmanned Aerial Vehicles, Physically Based Hydrological Modeling, and the Ensemble Kalman Filter
260 _ _ |a [New York]
|c 2018
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552641186_21951
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Flood events can change the riverbed topography as well as the riverbed texture and structure, which in turn can influence the riverbed hydraulic conductivity (Krb) and river‐aquifer exchange fluxes. A major flood event occurred in the Emme River in Switzerland in 2014, with major implications for the riverbed structure. The event was simulated with the fully integrated hydrological model HydroGeoSphere. The aim was to investigate the effect of the spatial and temporal variability of riverbed topography and Krb on predictions of hydraulic states and fluxes and to test whether data assimilation (DA) based on the ensemble Kalman filter (EnKF) can better reproduce flood‐induced changes to hydraulic states and parameters with the help of riverbed topography changes recorded with an unmanned aerial vehicle (UAV) and through‐water photogrammetry. The performance of DA was assessed by evaluating the reproduction of the hydraulic states for the year 2015. While the prediction of surface water discharge was not affected much by the changes in riverbed topography and in Krb, using the UAV‐derived postflood instead of the preflood riverbed topography reduced the root‐mean‐square error of predicted heads (RMSE [h]) by 24%. If, in addition to using the postflood riverbed topography, also Krb and aquifer hydraulic conductivity (Kaq) were updated through DA after the flood, the RMSE (h) was reduced by 55%. We demonstrate how updating of Krb and Kaq based on EnKF and UAV‐based observations of riverbed topography transience after a major flood event strongly improve predictions of postflood hydraulic states.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a Better predictions with environmental simulation models: optimally integrating new data sources (jicg41_20100501)
|0 G:(DE-Juel1)jicg41_20100501
|c jicg41_20100501
|f Better predictions with environmental simulation models: optimally integrating new data sources
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schilling, Oliver S.
|0 0000-0003-3840-7087
|b 1
700 1 _ |a Kurtz, Wolfgang
|0 P:(DE-Juel1)140349
|b 2
700 1 _ |a Brunner, Philip
|0 0000-0001-6304-6274
|b 3
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 4
700 1 _ |a Hendricks Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 5
773 _ _ |a 10.1029/2018WR023067
|g Vol. 54, no. 11, p. 9342 - 9363
|0 PERI:(DE-600)2029553-4
|n 11
|p 9342 - 9363
|t Water resources research
|v 54
|y 2018
|x 0043-1397
856 4 _ |u https://juser.fz-juelich.de/record/859189/files/F7015882%20%28002%29.pdf
856 4 _ |u https://juser.fz-juelich.de/record/859189/files/2018WR023067.pdf
|y Published on 2018-11-06. Available in OpenAccess from 2019-05-06.
856 4 _ |u https://juser.fz-juelich.de/record/859189/files/F7015882%20%28002%29.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/859189/files/2018WR023067.pdf?subformat=pdfa
|x pdfa
|y Published on 2018-11-06. Available in OpenAccess from 2019-05-06.
909 C O |o oai:juser.fz-juelich.de:859189
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21