000859195 001__ 859195
000859195 005__ 20250129094237.0
000859195 0247_ $$2doi$$a10.1002/adma.201806183
000859195 0247_ $$2ISSN$$a0935-9648
000859195 0247_ $$2ISSN$$a1521-4095
000859195 0247_ $$2ISSN$$a=
000859195 0247_ $$2ISSN$$aAdvanced
000859195 0247_ $$2ISSN$$amaterials
000859195 0247_ $$2ISSN$$a(Weinheim.
000859195 0247_ $$2ISSN$$aInternet)
000859195 0247_ $$2pmid$$apmid:30570780
000859195 0247_ $$2WOS$$aWOS:000459724200012
000859195 0247_ $$2altmetric$$aaltmetric:52986346
000859195 037__ $$aFZJ-2019-00085
000859195 082__ $$a660
000859195 1001_ $$0P:(DE-Juel1)165826$$aCao, Lei$$b0$$eCorresponding author
000859195 245__ $$aReversible Control of Physical Properties via an Oxygen-Vacancy-Driven Topotactic Transition in Epitaxial La 0.7 Sr 0.3 MnO 3− δ Thin Films
000859195 260__ $$aWeinheim$$bWiley-VCH$$c2019
000859195 3367_ $$2DRIVER$$aarticle
000859195 3367_ $$2DataCite$$aOutput Types/Journal article
000859195 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586000453_29485
000859195 3367_ $$2BibTeX$$aARTICLE
000859195 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859195 3367_ $$00$$2EndNote$$aJournal Article
000859195 520__ $$aThe vacancy distribution of oxygen and its dynamics directly affect the functional response of complex oxides and their potential applications. Dynamic control of the oxygen composition may provide the possibility to deterministically tune the physical properties and establish a comprehensive understanding of the structure–property relationship in such systems. Here, an oxygen‐vacancy‐induced topotactic transition from perovskite to brownmillerite and vice versa in epitaxial La0.7Sr0.3MnO3−δ thin films is identified by real‐time X‐ray diffraction. A novel intermediate phase with a noncentered crystal structure is observed for the first time during the topotactic phase conversion which indicates a distinctive transition route. Polarized neutron reflectometry confirms an oxygen‐deficient interfacial layer with drastically reduced nuclear scattering length density, further enabling a quantitative determination of the oxygen stoichiometry (La0.7Sr0.3MnO2.65) for the intermediate state. Associated physical properties of distinct topotactic phases (i.e., ferromagnetic metal and antiferromagnetic insulator) can be reversibly switched by an oxygen desorption/absorption cycling process. Importantly, a significant lowering of necessary conditions (temperatures below 100 °C and conversion time less than 30 min) for the oxygen reloading process is found. These results demonstrate the potential applications of defect engineering in the design of perovskite‐based functional materials.
000859195 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000859195 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000859195 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000859195 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000859195 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000859195 588__ $$aDataset connected to CrossRef
000859195 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000859195 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
000859195 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000859195 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
000859195 7001_ $$0P:(DE-Juel1)145895$$aPetracic, Oleg$$b1$$eCorresponding author
000859195 7001_ $$0P:(DE-Juel1)131055$$aZakalek, Paul$$b2
000859195 7001_ $$0P:(DE-Juel1)141969$$aWeber, Alexander$$b3
000859195 7001_ $$0P:(DE-Juel1)130928$$aRücker, Ulrich$$b4
000859195 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b5
000859195 7001_ $$0P:(DE-Juel1)158075$$aKoutsioumpas, Alexandros$$b6
000859195 7001_ $$0P:(DE-Juel1)130821$$aMattauch, Stefan$$b7
000859195 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b8
000859195 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201806183$$gp. 1806183 -$$n7$$p1806183 -$$tAdvanced materials$$v31$$x0935-9648$$y2019
000859195 8564_ $$uhttps://juser.fz-juelich.de/record/859195/files/Cao_et_al-2019-Advanced_Materials.pdf$$yRestricted
000859195 8564_ $$uhttps://juser.fz-juelich.de/record/859195/files/Cao_et_al-2019-Advanced_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859195 909CO $$ooai:juser.fz-juelich.de:859195$$pVDB$$pVDB:MLZ
000859195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165826$$aForschungszentrum Jülich$$b0$$kFZJ
000859195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145895$$aForschungszentrum Jülich$$b1$$kFZJ
000859195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131055$$aForschungszentrum Jülich$$b2$$kFZJ
000859195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141969$$aForschungszentrum Jülich$$b3$$kFZJ
000859195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b4$$kFZJ
000859195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b5$$kFZJ
000859195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158075$$aForschungszentrum Jülich$$b6$$kFZJ
000859195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130821$$aForschungszentrum Jülich$$b7$$kFZJ
000859195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b8$$kFZJ
000859195 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000859195 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000859195 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000859195 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000859195 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000859195 9141_ $$y2019
000859195 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859195 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859195 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859195 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2017
000859195 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859195 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859195 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859195 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859195 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859195 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859195 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000859195 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV MATER : 2017
000859195 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000859195 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000859195 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000859195 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x3
000859195 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x4
000859195 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x5
000859195 980__ $$ajournal
000859195 980__ $$aVDB
000859195 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859195 980__ $$aI:(DE-Juel1)PGI-4-20110106
000859195 980__ $$aI:(DE-82)080009_20140620
000859195 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859195 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
000859195 980__ $$aI:(DE-Juel1)PGI-9-20110106
000859195 980__ $$aUNRESTRICTED
000859195 981__ $$aI:(DE-Juel1)JCNS-2-20110106