000859217 001__ 859217
000859217 005__ 20210130000212.0
000859217 0247_ $$2arXiv$$aarXiv:1901.00843
000859217 0247_ $$2Handle$$a2128/21169
000859217 0247_ $$2altmetric$$aaltmetric:53430042
000859217 037__ $$aFZJ-2019-00098
000859217 0881_ $$aPoS LATTICE2018 (2019) 115
000859217 088__ $$2Other$$aPoS LATTICE2018 (2019) 115
000859217 1001_ $$0P:(DE-HGF)0$$aEngelhardt, M.$$b0$$eCorresponding author
000859217 1112_ $$a36th Annual International Symposium on Lattice Field Theory$$cEast Lansing, Michigan$$d2018-07-22 - 2018-07-28$$gLattice 2018$$wUSA
000859217 245__ $$aQuark orbital angular momentum in the proton evaluated using a direct derivative method
000859217 260__ $$aTrieste$$bSISSA$$c2019
000859217 300__ $$a7 p.
000859217 3367_ $$2ORCID$$aCONFERENCE_PAPER
000859217 3367_ $$033$$2EndNote$$aConference Paper
000859217 3367_ $$2BibTeX$$aINPROCEEDINGS
000859217 3367_ $$2DRIVER$$aconferenceObject
000859217 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$mreport
000859217 3367_ $$2DataCite$$aOutput Types/Conference Paper
000859217 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1547535106_20255
000859217 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000859217 4900_ $$aProceedings of Science$$vLATTICE2018
000859217 500__ $$a7 pages, 3 figures, to appear in the proceedings of the 23rd International Spin Physics Symposium (SPIN2018), 10-14 September 2018, Ferrara, Italy, and in the proceedings of the 36th Annual International Symposium on Lattice Field Theory (LATTICE2018), 22-28 July 2018, Michigan State University, East Lansing, Michigan, USA
000859217 520__ $$aQuark orbital angular momentum (OAM) in the proton can be calculated directly given a Wigner function encoding the simultaneous distribution of quark transverse positions and momenta. This distribution can be accessed via proton matrix elements of a quark bilocal operator (the separation in which is Fourier conjugate to the quark momentum) featuring a momentum transfer (which is Fourier conjugate to the quark position). To generate the weighting by quark transverse position needed to calculate OAM, a derivative with respect to momentum transfer is consequently required. This derivative is evaluated using a direct derivative method, i.e., a method in which the momentum derivative of a correlator is directly sampled in the lattice calculation, as opposed to extracting it a posteriori from the numerical correlator data. The method removes the bias stemming from estimating the derivative a posteriori that was seen to afflict a previous exploratory calculation. Data for Ji OAM generated on a clover ensemble at pion mass $m_{\pi } = 317\, \mbox{MeV} $ are seen to agree with the result obtained via the traditional Ji sum rule method. By varying the gauge connection in the quark bilocal operator, also Jaffe-Manohar OAM is extracted, and seen to be enhanced significantly compared to Ji OAM.
000859217 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000859217 588__ $$aDataset connected to arXivarXiv
000859217 7001_ $$0P:(DE-HGF)0$$aGreen, J.$$b1
000859217 7001_ $$0P:(DE-Juel1)145643$$aHasan, N.$$b2
000859217 7001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b3
000859217 7001_ $$0P:(DE-HGF)0$$aMeinel, S.$$b4
000859217 7001_ $$0P:(DE-HGF)0$$aNegele, J.$$b5
000859217 7001_ $$0P:(DE-HGF)0$$aPochinsky, A.$$b6
000859217 7001_ $$0P:(DE-HGF)0$$aSyritsyn, S.$$b7
000859217 8564_ $$uhttps://juser.fz-juelich.de/record/859217/files/1901.00843.pdf$$yOpenAccess
000859217 8564_ $$uhttps://juser.fz-juelich.de/record/859217/files/1901.00843.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859217 909CO $$ooai:juser.fz-juelich.de:859217$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000859217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145643$$aForschungszentrum Jülich$$b2$$kFZJ
000859217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich$$b3$$kFZJ
000859217 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000859217 9141_ $$y2019
000859217 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859217 920__ $$lyes
000859217 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000859217 980__ $$acontrib
000859217 980__ $$aVDB
000859217 980__ $$aUNRESTRICTED
000859217 980__ $$areport
000859217 980__ $$acontb
000859217 980__ $$aI:(DE-Juel1)JSC-20090406
000859217 9801_ $$aFullTexts