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Quark orbital angular momentum (OAM) in the proton can be calculated directly given a Wigner

function encoding the simultaneous distribution of quark transverse positions and momenta. This

distribution can be accessed via proton matrix elements of a quark bilocal operator (the separation

in which is Fourier conjugate to the quark momentum) featuring a momentum transfer (which is

Fourier conjugate to the quark position). To generate the weighting by quark transverse position

needed to calculate OAM, a derivative with respect to momentum transfer is consequently re-

quired. This derivative is evaluated using a direct derivative method, i.e., a method in which the

momentum derivative of a correlator is directly sampled in the lattice calculation, as opposed to

extracting it a posteriori from the numerical correlator data. The method removes the bias stem-

ming from estimating the derivative a posteriori that was seen to afflict a previous exploratory

calculation. Data for Ji OAM generated on a clover ensemble at pion mass mπ = 317MeV are

seen to agree with the result obtained via the traditional Ji sum rule method. By varying the gauge

connection in the quark bilocal operator, also Jaffe-Manohar OAM is extracted, and seen to be

enhanced significantly compared to Ji OAM.
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1. Introduction

A prominent endeavor in the study of hadron structure is understanding the decomposition of

the spin of the proton into the contributions from the spins and orbital angular momenta (OAM)

of its quark and gluon constituents. Since gauge invariance prevents a consideration of quark

and gluon degrees of freedom in isolation, there is no unique definition of quark OAM; any such

definition will contain gluonic effects to a varying degree. Two widely studied decomposition

schemes are the ones due to Ji [1] and to Jaffe and Manohar [2].

Recently, a method to evaluate quark OAM in Lattice QCD directly from the simultaneous

distribution of quark transverse positions and momenta in a rapidly propagating proton was ex-

plored in [3]. This distribution is encoded in generalized transverse momentum-dependent parton

distributions (GTMDs) [4–7]; in comparison to standard TMDs, which parametrize forward ma-

trix elements of an appropriate bilocal quark operator, GTMDs additionally include a momentum

transfer. The momentum transfer is Fourier conjugate to the quark impact parameter and thus sup-

plements the transverse momentum information with transverse position information, generating,

in effect, a Wigner function. The freedom in choosing the gauge connection in the bilocal quark

operator allows one to access a continuum of quark OAM definitions, including the ones of Ji

and Jaffe-Manohar. In this respect, the GTMD approach extends beyond the standard quark OAM

calculation via Ji’s sum rule, which yields specifically Ji OAM.

The present work constitutes a further methodological development of the approach intro-

duced in [3]. The result for Ji OAM obtained using the concrete implementation in [3] deviated

significantly from the standard Ji sum rule result, due to a systematic bias inherent in the numerical

method. This discrepancy is resolved in the present work, validating the GTMD approach. Further-

more, the present investigation is carried out at a significantly lower pion mass, mπ = 317MeV.

2. Quark orbital angular momentum

The quark OAM component LU
3 in a longitudinally polarized proton propagating in the 3-

direction can be accessed via a GTMD matrix element [5],

LU
3 =

1

2P+
εi j

∂

∂ zT,i

∂

∂∆T, j

〈p′,S′ =~e3|ψ(−z/2)γ+Uψ(z/2)|p,S =~e3〉
S [U ]

∣

∣

∣

∣

z+=z−=0 , ∆T=0 , zT→0

(2.1)

A number of remarks are in order concerning this expression. The initial and final proton momenta

are treated symmetrically, p = P −∆T/2, p′ = P +∆T/2, where the spatial component of P is

in 3-direction and the momentum transfer ∆T is transverse. Since ∆T is Fourier conjugate to the

quark impact parameter bT , evaluating the ∆T -derivative at ∆T = 0 amounts to averaging bT . On

the other hand, the transverse quark operator separation zT is Fourier conjugate to the transverse

quark momentum kT ; therefore, evaluating the zT -derivative at zT = 0 amounts to averaging kT .

Here, the limit zT → 0 must be taken carefully, since it is associated with ultraviolet divergences. In

aggregate, thus, (2.1) yields the average bT ×kT , i.e., OAM in the 3-direction. Also the longitudinal

quark momentum components are integrated over in view of the specification z+ = z− = 0. In the

thus constructed average, quark spin direction is immaterial owing to the use of the Dirac structure

γ+. Finally, (2.1) depends on the gauge link U connecting the quark operators, along with a soft
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factor S [U ] which absorbs divergences associated with the quantum fluctuations of U ; for present

purposes, one may consider S [U ] to include also renormalization factors associated with the quark

field operators. This soft factor is the same as for the standard TMD matrix element [8], since (2.1)

only differs from the latter in the external state, not the operator. The multiplicative factor S [U ]

will be canceled by forming an appropriate ratio below and thus does not need to be specified in

more detail. It is in the path of U that different definitions of quark OAM are encoded; (2.1) is

a functional of U . In the present work, staple-shaped U ≡ U [−z/2,ηv− z/2,ηv+ z/2,z/2] are

considered, where the arguments of U are positions joined by straight Wilson lines. Thus, the

vector v gives the direction of the staple, and the length of the staple is scaled by the parameter η .

For η = 0, one has a straight Wilson line directly connecting the quark operators.

The η = 0 straight gauge link limit corresponds to Ji OAM [9], whereas the η →±∞ limit of

a staple extending to infinity yields Jaffe-Manohar OAM [10]. Such a staple link incorporates final

state interactions, e.g., in semi-inclusive deep inelastic scattering (SIDIS) processes, with the staple

legs corresponding to the direction of propagation of the struck quark. Thus, Jaffe-Manohar quark

OAM differs from Ji quark OAM in that it includes the integrated torque accumulated by the struck

quark as it leaves the proton [11]. In a Lattice QCD calculation, η can be varied quasi-continuously,

with the Jaffe-Manohar limit achieved by extrapolation. This yields a gauge-invariant interpolation

between the Ji and Jaffe-Manohar cases.

In addition, the direction v of the staple needs to be specified. The most straightforward choice

for the direction of propagation of the struck quark in a hard scattering process would initially

appear to be a lightlike vector. However, such a choice leads to severe rapidity divergences, which

are regulated in the scheme advanced in [12, 13] by taking v off the light cone into the spacelike

region. The matrix element (2.1) determining quark OAM therefore depends on the additional

Collins-Soper type parameter ζ̂ = v ·P/(
√

|v2|
√

P2). The light-cone limit corresponds to ζ̂ → ∞.

As in lattice TMD studies [14–16], an appropriate ratio of quantities can be employed to cancel

the soft factor S [U ]. A suitable quantity for this purpose is the number of valence quarks

n =
1

2P+

〈p′,S′ =~e3|ψ(−z/2)γ+Uψ(z/2)|p,S =~e3〉
S [U ]

∣

∣

∣

∣

z+=z−=0 , ∆T=0 , zT→0

(2.2)

which only differs from (2.1) by omitting the weighting with bT × kT (in terms of the Fourier

conjugate variables), and thus counts quarks. The soft factor S [U ] is even in zT , and thus cancels

when forming the ratio LU
3 /n. Furthermore, at finite lattice spacing a, the derivative with respect

to zT in (2.1) is realized as a finite difference, leading to the renormalized quantity evaluated in

practice,

LU
3

n
=

1

a
εi j

∂
∂∆T, j

(Φ(a~ei)−Φ(−a~ei))

Φ(a~ei)+Φ(−a~ei)

∣

∣

∣

∣

∣

z+=z−=0 , ∆T=0

(2.3)

where summation over the transverse indices i and j is implied, and the abbreviation Φ(zT ) =

〈p′,S′ = ~e3|ψ(−z/2)γ+Uψ(z/2)|p,S = ~e3〉 has been introduced. On the other hand, (2.3) also

calls for a derivative with respect to ∆T . In the initial exploration [3], this derivative was likewise

realized as finite difference. This led to a significant systematic bias in the numerical results because

of the substantial increment in ∆T employed. The chief advance of the present study is to evaluate

this derivative using a direct derivative method, as described below. The present study furthermore

is carried out at a lower pion mass, mπ = 317MeV, than used in [3].
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3. Direct derivative method

The principal ingredient needed to extract the matrix element Φ(zT ) is the following three-

point correlator, constructed using proton sources and sinks N, N, projected onto proton momentum

P+∆T/2 at the sink and onto momentum transfer ∆T at the operator insertion, as well as onto

longitudinal polarization, encoded in Γpol,

C3 = Tr

[

∑
x,y

e−i(P+∆T/2)·(x−y)e−i(P−∆T/2)·y 〈N(x)ψ(y− z/2)γ+Uψ(y+ z/2)N(0)
〉

Γpol

]

(3.1)

= ∑
x,y

e−iP·x
〈

Tr

[

(

γ5Gpt-sm(y− z/2,x,∆T /2)γ5S
NN†
Γpol

(0;x)
)†

γ+UGpt-sm(y+ z/2,0,−∆T /2)

]〉

Here, the second line corresponds to the standard evaluation of the correlator through a sequential

source, SNN
Γpol

(0;x), in which, however, the phases associated with the projection onto momentum

transfer ∆T have been absorbed into the propagators, Gpt-sm(s, t,q) = e−iq·(s−t)Gpt-sm(s, t), where

Gpt-sm(s, t) denotes the standard smeared-to-point propagator. In this form, the dependence on ∆T

resides purely in the (modified) propagators, and the derivative of the correlator with respect to

∆T can be assembled once one has constructed the derivatives of the propagators. The derivative

of a modified point-to-point propagator G is discussed in detail in [17]; essentially, the deriva-

tive, evaluated at ∆T = 0, generates a vector current insertion into the propagator. Generalized to

smeared-to-point propagators, which contain an additional convolution with a smearing kernel K,

one obtains a further term from the derivative of K [18],

∂

∂q j

Gpt-sm(s, t,q)

∣

∣

∣

∣

q=0

=∑
x

G(s,x)

[

−i∑
y

VjG(x,y)K(y, t)+
∂

∂q j

e−iq·(x−t)K(x, t)

∣

∣

∣

∣

q=0

]

(3.2)

where Vj is the conserved vector current insertion operator. The computation of the derivative

of the smearing kernel is discussed in detail in [18]. By constructing and evaluating correlators

corresponding directly to derivatives of C3, cf. (3.1), in this fashion, any systematic bias in carrying

out the derivative with respect to ∆T in (2.3) is avoided.
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Figure 1: Ji quark OAM obtained for different ζ̂ , with extrapolations to large ζ̂ (blue squares), compared to

the Ji sum rule result (red diamonds). The left panel is taken from [3], the right panel displays the results of

the present work.
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4. Lattice calculation and results

To perform a lattice calculation of the ratio (2.3), the problem must be boosted into a Lorentz

frame in which the TMD operator entering Φ(zT ) exists at a single time. There is no obstacle to this,

given that the directions of z and v are both spacelike, cf. the discussion above preceding eq. (2.2).

In the frame preferred for the lattice calculation, v points in the longitudinal 3-direction, whereas

zT is transverse, in the direction orthogonal to the momentum transfer ∆T . In this frame, Φ(zT ) can

be evaluated using standard Lattice QCD methods. Numerical data for the ratio (2.3) were obtained

on a clover fermion ensemble constituted of 323 × 96 lattices with spacing a = 0.114fm and pion

mass mπ = 317MeV. The source-sink separation employed was 10a = 1.14fm. The longitudinal

Figure 2: Quark OAM as a function of staple length

η , normalized to the modulus of the η = 0 Ji OAM

value. Asymptotic values were extracted by averaging

over data at η |v|/a =±7, ±8, ±9.

proton momentum components P3 = 0,

2π/(aL), 4π/(aL) were included in the cal-

culation, where L = 32 denotes the spatial

lattice extent. This corresponds to Collins-

Soper parameters ζ̂ = 0, 0.315, 0.63.

Examining first the η = 0 limit, corre-

sponding to Ji OAM, Fig. 1 compares the

results obtained in the present calculation

(right panel) with results taken from the ini-

tial exploration [3] (left panel). Data for

three values of ζ̂ are displayed, together

with an extrapolation to large ζ̂ , compared

to Ji OAM as obtained via Ji’s sum rule at the

same pion mass [19]. It should be noted that,

by maintaining the definition of v as point-

ing in the longitudinal 3-direction, ζ̂ can still

formally be defined in the η = 0 case, and it

characterizes the momentum of the proton;

however, Ji OAM ultimately cannot depend

on this parameter, since v does not enter the

definition of the straight gauge link. I.e., Ji

OAM is boost-invariant.

This constraint was not taken into ac-

count in the extrapolation of the data in the

left panel [3], which themselves are com-

patible with constant behavior. Instead, an

ad hoc fit allowing for an approach to large

ζ̂ proportional to 1/ζ̂ was performed. As

a result, the central value and uncertainty

of the extrapolation extend to larger magni-

tudes than they would by fitting a constant;

with the latter fit, the discrepancy with the Ji

sum rule value would be exhibited more
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Figure 3: Torque accumulated by the struck quark, cf.

main text, normalized to the modulus of the η = 0 Ji

OAM value.

starkly. As already noted above, this dis-

crepancy is owed to the biased estimate of

the ∆T -derivative in (2.3) via a finite differ-

ence employed in [3].

By contrast, the present calculation,

cf. the right panel in Fig. 1, treats the ∆T -

derivative in (2.3) in an unbiased manner,

and is seen to agree well with the Ji sum

rule result for all three proton momenta, as

well as when extrapolated to large ζ̂ using

a constant fit. This verifies that the discrep-

ancy observed in the initial study [3] indeed

was due to the biased estimate of the ∆T -

derivative. The unbiased treatment via the

direct derivative method removes the discrepancy. The evaluation of Ji OAM via the nonlocal

GTMD matrix element (2.1) coincides with the evaluation via the local matrix elements encoding

the GPD moments entering Ji’s sum rule, validating the GTMD method.

Turning to the transition from Ji OAM to Jaffe-Manohar OAM as a function of the staple

length η , Fig. 2 displays data at the three different available ζ̂ . The data are normalized to the

magnitude of the η = 0 Ji value. Starting with Ji quark OAM at η = 0, the struck quark in a

deep inelastic scattering process accumulates torque as it is leaving the proton, to finally end up

with Jaffe-Manohar OAM at large η . The effect is substantial, can be clearly resolved in the

data, and is directed such as to enhance the magnitude of OAM compared to the η = 0 value.

It increases as one departs from the ζ̂ = 0 limit towards finite proton momenta; no significant

difference between the results at the two nonvanishing ζ̂ is seen. The effect is thus likely to survive

the extrapolation to large ζ̂ . Fig. 3 displays such an extrapolation for the integrated torque τ3 =

L
(η=∞)
3 /n(η=∞)− L

(η=0)
3 /n(η=0) alone, using the fit ansatz A+B/ζ̂ . The extrapolated integrated

torque is roughly one third of the originally present Ji quark OAM in the ensemble used here.

5. Conclusion

The main thrust of the work presented here was the further methodological development of

the GTMD approach to evaluating quark OAM in the proton in Lattice QCD. Specifically, eq. (2.3)

calls for a derivative with respect to momentum transfer ∆T . Employing a direct derivative method

to evaluate (2.3) free of systematic bias, the result for Ji quark OAM was seen to agree with the

result obtained using the standard Ji sum rule method. This stands in contrast to the initial ex-

ploration [3], in which a biased evaluation of the ∆T -derivative led to a significant discrepancy in

the Ji quark OAM results. The agreement achieved using the improved methodology validates the

GTMD approach. Furthermore, by varying the gauge connection in the quark bilocal operator un-

der consideration, also Jaffe-Manohar OAM was extracted, and seen to be enhanced significantly

compared to Ji OAM, by about one third, at the pion mass mπ = 317MeV employed in this study.

Going forward, the exploration of quark OAM evolution through calculations at varying lattice

spacings is of interest, and investigations at lower pion masses must be pursued.
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