000859219 001__ 859219 000859219 005__ 20240610120826.0 000859219 0247_ $$2doi$$a10.1140/epja/i2018-12676-1 000859219 0247_ $$2ISSN$$a0044-3328 000859219 0247_ $$2ISSN$$a0939-7922 000859219 0247_ $$2ISSN$$a1431-5831 000859219 0247_ $$2Handle$$a2128/21263 000859219 0247_ $$2WOS$$aWOS:000455187000001 000859219 0247_ $$2altmetric$$aaltmetric:44902147 000859219 037__ $$aFZJ-2019-00100 000859219 082__ $$a530 000859219 1001_ $$0P:(DE-HGF)0$$aKlein, Nico$$b0$$eCorresponding author 000859219 245__ $$aLattice improvement in lattice effective field theory 000859219 260__ $$aHeidelberg$$bSpringer$$c2018 000859219 3367_ $$2DRIVER$$aarticle 000859219 3367_ $$2DataCite$$aOutput Types/Journal article 000859219 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552577660_31636 000859219 3367_ $$2BibTeX$$aARTICLE 000859219 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000859219 3367_ $$00$$2EndNote$$aJournal Article 000859219 520__ $$aLattice calculations using the framework of effective field theory have been applied to a wide range of few-body and many-body systems. One of the challenges of these calculations is to remove systematic errors arising from the nonzero lattice spacing. Fortunately, the lattice improvement program pioneered by Symanzik provides a formalism for doing this. While lattice improvement has already been utilized in lattice effective field theory calculations, the effectiveness of the improvement program has not been systematically benchmarked. In this work we use lattice improvement to remove lattice errors for a one-dimensional system of bosons with zero-range interactions. We construct the improved lattice action up to next-to-next-to-leading order and verify that the remaining errors scale as the fourth power of the lattice spacing for observables involving as many as five particles. Our results provide a guide for increasing the accuracy of future calculations in lattice effective field theory with improved lattice actions. 000859219 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000859219 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1 000859219 536__ $$0G:(DE-Juel1)jara0015_20130501$$aNuclear Lattice Simulations (jara0015_20130501)$$cjara0015_20130501$$fNuclear Lattice Simulations$$x2 000859219 588__ $$aDataset connected to CrossRef 000859219 7001_ $$0P:(DE-Juel1)156278$$aLee, Dean$$b1 000859219 7001_ $$0P:(DE-Juel1)131252$$aMeissner, Ulf-G.$$b2 000859219 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/i2018-12676-1$$gVol. 54, no. 12, p. 233$$n12$$p233$$tThe European physical journal / A$$v54$$x0939-7922$$y2018 000859219 8564_ $$uhttps://juser.fz-juelich.de/record/859219/files/Klein2018_Article_LatticeImprovementInLatticeEff.pdf$$yRestricted 000859219 8564_ $$uhttps://juser.fz-juelich.de/record/859219/files/1807.04234.pdf$$yOpenAccess 000859219 8564_ $$uhttps://juser.fz-juelich.de/record/859219/files/Klein2018_Article_LatticeImprovementInLatticeEff.pdf?subformat=pdfa$$xpdfa$$yRestricted 000859219 8564_ $$uhttps://juser.fz-juelich.de/record/859219/files/1807.04234.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000859219 909CO $$ooai:juser.fz-juelich.de:859219$$popen_access$$popenaire$$pdnbdelivery$$pdriver$$pVDB 000859219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156278$$aForschungszentrum Jülich$$b1$$kFZJ 000859219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b2$$kFZJ 000859219 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000859219 9141_ $$y2018 000859219 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000859219 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000859219 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2017 000859219 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000859219 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000859219 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000859219 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000859219 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000859219 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000859219 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000859219 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000859219 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000859219 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0 000859219 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1 000859219 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2 000859219 9801_ $$aFullTexts 000859219 980__ $$ajournal 000859219 980__ $$aVDB 000859219 980__ $$aI:(DE-Juel1)IAS-4-20090406 000859219 980__ $$aI:(DE-Juel1)IKP-3-20111104 000859219 980__ $$aI:(DE-82)080012_20140620 000859219 980__ $$aUNRESTRICTED 000859219 981__ $$aI:(DE-Juel1)IAS-4-20090406