000859219 001__ 859219
000859219 005__ 20240610120826.0
000859219 0247_ $$2doi$$a10.1140/epja/i2018-12676-1
000859219 0247_ $$2ISSN$$a0044-3328
000859219 0247_ $$2ISSN$$a0939-7922
000859219 0247_ $$2ISSN$$a1431-5831
000859219 0247_ $$2Handle$$a2128/21263
000859219 0247_ $$2WOS$$aWOS:000455187000001
000859219 0247_ $$2altmetric$$aaltmetric:44902147
000859219 037__ $$aFZJ-2019-00100
000859219 082__ $$a530
000859219 1001_ $$0P:(DE-HGF)0$$aKlein, Nico$$b0$$eCorresponding author
000859219 245__ $$aLattice improvement in lattice effective field theory
000859219 260__ $$aHeidelberg$$bSpringer$$c2018
000859219 3367_ $$2DRIVER$$aarticle
000859219 3367_ $$2DataCite$$aOutput Types/Journal article
000859219 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552577660_31636
000859219 3367_ $$2BibTeX$$aARTICLE
000859219 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859219 3367_ $$00$$2EndNote$$aJournal Article
000859219 520__ $$aLattice calculations using the framework of effective field theory have been applied to a wide range of few-body and many-body systems. One of the challenges of these calculations is to remove systematic errors arising from the nonzero lattice spacing. Fortunately, the lattice improvement program pioneered by Symanzik provides a formalism for doing this. While lattice improvement has already been utilized in lattice effective field theory calculations, the effectiveness of the improvement program has not been systematically benchmarked. In this work we use lattice improvement to remove lattice errors for a one-dimensional system of bosons with zero-range interactions. We construct the improved lattice action up to next-to-next-to-leading order and verify that the remaining errors scale as the fourth power of the lattice spacing for observables involving as many as five particles. Our results provide a guide for increasing the accuracy of future calculations in lattice effective field theory with improved lattice actions.
000859219 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000859219 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000859219 536__ $$0G:(DE-Juel1)jara0015_20130501$$aNuclear Lattice Simulations (jara0015_20130501)$$cjara0015_20130501$$fNuclear Lattice Simulations$$x2
000859219 588__ $$aDataset connected to CrossRef
000859219 7001_ $$0P:(DE-Juel1)156278$$aLee, Dean$$b1
000859219 7001_ $$0P:(DE-Juel1)131252$$aMeissner, Ulf-G.$$b2
000859219 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/i2018-12676-1$$gVol. 54, no. 12, p. 233$$n12$$p233$$tThe European physical journal / A$$v54$$x0939-7922$$y2018
000859219 8564_ $$uhttps://juser.fz-juelich.de/record/859219/files/Klein2018_Article_LatticeImprovementInLatticeEff.pdf$$yRestricted
000859219 8564_ $$uhttps://juser.fz-juelich.de/record/859219/files/1807.04234.pdf$$yOpenAccess
000859219 8564_ $$uhttps://juser.fz-juelich.de/record/859219/files/Klein2018_Article_LatticeImprovementInLatticeEff.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859219 8564_ $$uhttps://juser.fz-juelich.de/record/859219/files/1807.04234.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859219 909CO $$ooai:juser.fz-juelich.de:859219$$popen_access$$popenaire$$pdnbdelivery$$pdriver$$pVDB
000859219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156278$$aForschungszentrum Jülich$$b1$$kFZJ
000859219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b2$$kFZJ
000859219 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000859219 9141_ $$y2018
000859219 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859219 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859219 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2017
000859219 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859219 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859219 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859219 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859219 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859219 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859219 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859219 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859219 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859219 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000859219 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000859219 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000859219 9801_ $$aFullTexts
000859219 980__ $$ajournal
000859219 980__ $$aVDB
000859219 980__ $$aI:(DE-Juel1)IAS-4-20090406
000859219 980__ $$aI:(DE-Juel1)IKP-3-20111104
000859219 980__ $$aI:(DE-82)080012_20140620
000859219 980__ $$aUNRESTRICTED
000859219 981__ $$aI:(DE-Juel1)IAS-4-20090406