001     859311
005     20250129092504.0
024 7 _ |a 2128/21202
|2 Handle
037 _ _ |a FZJ-2019-00183
041 _ _ |a English
100 1 _ |a Nielinger, Dennis
|0 P:(DE-Juel1)168167
|b 0
|e Corresponding author
111 2 _ |a Silicon Quantum Electronics Workshop 2018
|c Sydney
|d 2018-11-13 - 2018-11-15
|w Australia
245 _ _ |a SQuBiC1: An Integrated Control Chip for Semiconductor Spin Qubits
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1547621555_11586
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a In most quantum experiments nowadays the control and readout electronics is placed at room temperature. The number of qubits which can be operated with this approach is severely limited by the number of interconnects and the wiring between the qubit operating temperature level and the room temperature level. At the Central Institute for Electronic Systems at the Forschungszentrum Jülich we develop and design scalable solutions for readout and control of qubits for future use in quantum computers. Our approach leverages the advances of state-of-the-art commercial CMOS technologies while operating at deep-cryogenic temperatures close to the actual qubit. We designed and layouted a first chip for concept proof in a commercial 65 nm CMOS process. This chip contains a DC-digital-to-analog converter (DC-DAC), a pulse digital-to-analog converter, a 500 MHz digitally controlled current starved ring oscillator and a 20 GHz LC-oscillator. The DC-DAC is operating in a voltage range between 0 V and 1 V. The pulse DAC operates at a sample rate of 250 MHz and generates pulses in a range of 8 mV. In this presentation the chip architecture will be discussed in detail and corresponding simulation results will be shown.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
700 1 _ |a Christ, Volker
|0 P:(DE-Juel1)171560
|b 1
700 1 _ |a Degenhardt, Carsten
|0 P:(DE-Juel1)167475
|b 2
700 1 _ |a Geck, Lotte
|0 P:(DE-Juel1)169123
|b 3
700 1 _ |a Grewing, Christian
|0 P:(DE-Juel1)159350
|b 4
700 1 _ |a Kruth, Andre
|0 P:(DE-Juel1)156521
|b 5
700 1 _ |a Liebau, Daniel
|0 P:(DE-Juel1)169472
|b 6
700 1 _ |a Muralidharan, Pavithra
|0 P:(DE-Juel1)162362
|b 7
700 1 _ |a Schubert, Petra
|0 P:(DE-Juel1)174244
|b 8
700 1 _ |a Vliex, Patrick
|0 P:(DE-Juel1)171680
|b 9
700 1 _ |a Zambanini, Andre
|0 P:(DE-Juel1)145837
|b 10
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 11
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859311/files/20181113_SQEW2018_SYDNEY_TALK.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859311/files/20181113_SQEW2018_SYDNEY_TALK.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859311
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168167
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171560
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)169123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159350
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156521
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)169472
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)162362
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)174244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)171680
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)145837
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21