

SQUBIC1: AN INTEGRATED CONTROL CHIP FOR SEMICONDUCTOR QUBITS

15.11.2018 I D. NIELINGER, V. CHRIST, C. DEGENHARDT, L. GECK, C. GREWING, A. KRUTH, D. LIEBAU, P. MURALIDHARAN, P. SCHUBERT, P. VLIEX, A. ZAMBANINI AND S. VAN WAASEN

OVERVIEW

- General Introduction
- Scalability
- Electrical control of qubits
- Prototype chip SQuBiC 1
 - Bias Voltage DAC
 - Pulse DAC
 - DCO
 - VCO

- Next steps
- Discussion & Questions

GENERAL INTRODUCTION

Quantum Computing

- Requirements for a quantum computer:
 - Large number (10⁶-10⁹) of physical Qubits operated in a cryogenic environment (< 1K)
 - Room temperature electronics to communicate with the Qubits
 - Scalable control and read-out electronics

- Challenges :
 - Interconnects to room temperature electronics
 - Cooling power limits the power budget for circuitry at qubit temperature
 - Design for scalability in terms of area and power

SCALABILITY

Integrated CMOS

- Integrated CMOS scaling is unmatched over the last 50 years (Moore's law)
- The best approach for a scalable system is an application specific solution with reduced flexibility
- Using state of the art CMOS with prospect of using dedicated cryo-CMOS in the future

M. T. Bohr and I. A. Young, "CMOS Scaling Trends and Beyond," in *IEEE Micro*, vol. 37, no. 6, pp. 20-29, November/December 2017.

H.Klar and T.G. Noll, "Integrierte Digitale Schaltungen: Vom Fransistor zur optimierten Logikschaltung"

CRYOGENIC CMOS

Measurement Results for Transistors at Cryogenic Temperatures (CR) and Room Temperature (RT)

- Device: NMOS Core Bulk 1.2 V supply 480nm/60nm (V_{BS} = 0V)
- I²C Interface validated for liquid helium temperature

ELECTRICAL CONTROL OF QUBITS

Requirements SiGe Spin Qubits

- Microwave source 20..40 GHz
- IQ modulation, frequency modulation + 500 MHz
- Amplitude on/off, time resolution ~ 1..5 ns (pi pulse in 50 ns)
- Phase: 0 and π (equals x-axis and y-axis rotation on Bloch sphere)

Cryoelectronic for Si qubits
L.Schreiber | IQI, RWTH Aachen University

Characteristic	Specification
DC voltage range	±1 V
RF Frequency	20 GHz
RF Amplitude	~ 3mV
Max output power	-30 dBm
Maximal power dissipation	<<1W

• Scalable Quantum Bit Control

2 mm

BIAS VOLTAGE DAC

- Scalable Quantum Bit Control
- DC DAC

BIAS VOLTAGE DAC

Charge-Redistribution Topology

- No static power dissipation
- Low thermal noise: $\bar{V}_N^2 = \frac{K_B \cdot T}{C}$
- Multiple output channel per DAC

- Iterative charging to compensate voltage drop, no output buffer needed
- Coarse setting reference voltage, reduce power and bits in charge redistribution part

BIAS VOLTAGE DAC

Measurement Result

- DC characteristic measured at room temperature
- Region close to 0 limited by output range of the buffer

QUBIT DAC

- Scalable Quantum Bit Control
- Pulse DAC

PULSE DAC

Current Steering

- Segmented current steering topology
- 5-bit unary weighted
- 3-bit binary weighted

PULSE DAC

Current Steering

 DC characteristic measured at room temperature

- Monotonic
- Improvement possible through calibration

DIGITALLY CONTROLLED OSCILLATOR

- Scalable Quantum Bit Control
- DCO

DIGITALLY CONTROLLED OSCILLATOR

Topology

- Current starved ring oscillator topology
- Frequency control by starving inverter current
- Alternating normal and current starved inverters to restore slope steepness

DIGITALLY CONTROLLED OSCILLATOR

RT Measurement

- Frequency over input code for different bias currents
- Frequency increases with decreasing temperature

VOLTAGE CONTROLLED OSCILLATOR

- Scalable Quantum Bit Control
- Measurement only

VOLTAGE CONTROLLED OSCILLATOR

Topology

- LC-Oscillator
- Two cross coupled pairs
- Pseudo differential cascode amplifier with off-chip Balun

VCO

RT Measurement

NEXT STEPS

• Measure SQUBIC1...

...room temp. and cryogenic temp.

- Proof of principle
 - → Qubit operation with cryogenic integrated chip
- Outlook:
 - → Road to full scalability

QUESTIONS?

