000859319 001__ 859319
000859319 005__ 20210130000232.0
000859319 0247_ $$2doi$$a10.1109/ISGTEurope.2018.8571793
000859319 037__ $$aFZJ-2019-00191
000859319 1001_ $$0P:(DE-HGF)0$$aSchafer, Benjamin$$b0$$eCorresponding author
000859319 1112_ $$a2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)$$cSarajevo$$d2018-10-21 - 2018-10-25$$wBosnia and Herzegovina
000859319 245__ $$aIsolating the Impact of Trading on Grid Frequency Fluctuationsy
000859319 260__ $$bIEEE$$c2018
000859319 300__ $$a1-5
000859319 3367_ $$2ORCID$$aCONFERENCE_PAPER
000859319 3367_ $$033$$2EndNote$$aConference Paper
000859319 3367_ $$2BibTeX$$aINPROCEEDINGS
000859319 3367_ $$2DRIVER$$aconferenceObject
000859319 3367_ $$2DataCite$$aOutput Types/Conference Paper
000859319 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1548427912_25541
000859319 520__ $$aTo ensure reliable operation of power grids, their frequency shall stay within strict bounds. Multiple sources of disturbances cause fluctuations of the grid frequency, ranging from changing demand over volatile feed-in to energy trading. Here, we analyze frequency time series from the continental European grid in 2011 and 2017 as a case study to isolate the impact of trading. We find that trading at typical trading intervals such as full hours modifies the frequency fluctuation statistics. While particularly large frequency deviations in 2017 are not as frequent as in 2011, large deviations are more likely to occur shortly after the trading instances. A comparison between the two years indicates that trading at shorter intervals might be beneficial for frequency quality and grid stability, because particularly large fluctuations are substantially diminished. Furthermore, we observe that the statistics of the frequency fluctuations do not follow Gaussian distributions but are better described using heavy-tailed and asymmetric distributions, for example Levy-stable distributions. Comparing intervals without trading to those with trading instances indicates that frequency deviations near the trading times are distributed more widely and thus extreme deviations are orders of magnitude more likely. Finally, we briefly review a stochastic analysis that allows a quantitative description of power grid frequency fluctuations.
000859319 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0
000859319 536__ $$0G:(HGF)VH-NG-1025_20112014$$aVH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)$$cVH-NG-1025_20112014$$x1
000859319 536__ $$0G:(Grant)PIK_082017$$aCoNDyNet - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (PIK_082017)$$cPIK_082017$$x2
000859319 588__ $$aDataset connected to CrossRef Conference
000859319 7001_ $$0P:(DE-HGF)0$$aTimme, Marc$$b1
000859319 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b2$$ufzj
000859319 773__ $$a10.1109/ISGTEurope.2018.8571793
000859319 8564_ $$uhttps://juser.fz-juelich.de/record/859319/files/08571793.pdf$$yRestricted
000859319 8564_ $$uhttps://juser.fz-juelich.de/record/859319/files/08571793.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859319 909CO $$ooai:juser.fz-juelich.de:859319$$pVDB
000859319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b2$$kFZJ
000859319 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000859319 9141_ $$y2018
000859319 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000859319 980__ $$acontrib
000859319 980__ $$aVDB
000859319 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000859319 980__ $$aUNRESTRICTED