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GENERAL INTRODUCTION

Possible exponential speed up for certain tasks:

Shor's algorithm for factoring integers

Grover's algorithm for search in unordered databases

Quantum chemistry: Simulate new molecules and catalysts utilizing quantum mechanics

Quantum(-enhanced) machine learning

Requirements for a quantum computer:

Large number ( - ) of physical Qubits operated in a cryogenic environment (< 1K)

Room temperature electronics to communicate with the Qubits

Scalable control and read-out electronics

Quantum Computing
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SCALABILITY

Integrated CMOS scaling is unmatched over the 

The best approach for a scalable system is an 

application specific solution with reduced flexibility

Using state of the art CMOS with prospect of using 

dedicated cryo-CMOS in the future 

Integrated CMOS

M. T. Bohr and I. A. Young, "CMOS 

Scaling Trends and Beyond," in IEEE 

Micro, vol. 37, no. 6, pp. 20-29, 
November/December 2017.

H.Klar and T.G. Noll, 
Digitale 

Schaltungen: Vom Transistor 
zur optimierten 

Slide 511. Sep. 2018



CRYOGENIC CMOS

Device: NMOS Core Bulk 1.2V VDD 480nm/60nm (VBS = 0V)

I²C Interface validated for liquid helium temperature 

Measurement Results for Transistors at Cryogenic Temperatures (CR) and Room Temperature (RT)
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ELECTRICAL CONTROL OF QUBITS

Up to 8 uncorrelated bias voltages per Qubit, forming potential wells

2 pulse electrodes for Qubit operation

Key performance indicator: fidelity of Qubit Gate

Requirements GaAs Spin Qubits

Characteristic Specification

DC voltage range 1 V to 0 V

DC voltage stability (1V range) 20 µV

DC Stepsize 250 µV ( 12 bit)

Pulse voltage range ± 4 mV

Pulse sampling rate 250 MHz

Pulse resolution (8mV range) 30 µV ( 8 bit)

Cooling power budget @ 100 mK <1 mW

Tim Botzem oftwo-

p. 7, Figure 2.2.: Device Layout. Online: 
http://publications.rwth-aachen.de/record/689507, 
14.08.2017 
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QUBIT GATE DAC (PULSE DAC)

Pulse shapes were obtained by 

using a Matlab model

After optimizing the pulse shape, 

quantization is applied and the 

fidelity is evaluated

Beyond a certain number of bits, 

quantization is no longer the 

limiting factor for fidelity
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quantization

Fidelity independent 
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QUBIT GATE DAC

Segmented current 

steering topology

5-bit unary weighted

3-bit binary weighted

Current Steering

3-bit binary-weighted5-bit unary-weighted

5-bit MSB thermometer 

decoder

3-bit LSB 
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QUBIT GATE DAC

Digital current injection calibration

Small calibration DAC 3-Bit 

amplitude 1-Bit Sign

Calibration for each current cell
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BIAS VOLTAGE DAC

No static power dissipation

Low thermal noise: 

Multiple output channel per DAC

Loaded voltage divider:

Iterative charging to 

compensate voltage drop, 

no output buffer needed

Coarse setting reference voltage, 

reduce power and bits in charge 

redistribution part

Charge-Redistribution Topology

V
R

E
F

Transmission gate with 

dummy MOS

LSB MSB

VOUT
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BIAS VOLTAGE DAC
Refresh of Output Voltages

Periodically refreshing of output voltages due to leakage (mainly into switch transistor 

bulk) expected to decrease due to bulk freeze-out!
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