001     859332
005     20210130000234.0
024 7 _ |a 10.1021/acsphotonics.8b01116
|2 doi
024 7 _ |a WOS:000451496500056
|2 WOS
024 7 _ |a altmetric:49936623
|2 altmetric
037 _ _ |a FZJ-2019-00200
082 _ _ |a 530
100 1 _ |a Stange, Daniela
|0 P:(DE-Juel1)161180
|b 0
|e Corresponding author
245 _ _ |a GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers
260 _ _ |a Washington, DC
|c 2018
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547562946_15236
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a GeSn and SiGeSn are promising materials for the fabrication of a group IV laser source offering a number of design options from bulk to heterostructures and quantum wells. Here, we investigate GeSn/SiGeSn multi quantum wells using the optically pumped laser effect. Three complex heterostructures were grown on top of 200 nm thick strain-relaxed Ge0.9Sn0.1 buffers. The lasing is investigated in terms of threshold and maximal lasing operation temperature by comparing multiple quantum well to double heterostructure samples. Pumping under two different wavelengths of 1064 and 1550 nm yields comparable lasing thresholds. The design with multi quantum wells reduces the lasing threshold to 40 ± 5 kW/cm2 at 20 K, almost 10 times lower than for bulk structures. Moreover, 20 K higher maximal lasing temperatures were found for lower energy pumping of 1550 nm.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a von den Driesch, Nils
|0 P:(DE-Juel1)161247
|b 1
700 1 _ |a Zabel, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Armand-Pilon, Francesco
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rainko, Denis
|0 P:(DE-Juel1)166341
|b 4
|u fzj
700 1 _ |a Marzban, Bahareh
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zaumseil, Peter
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hartmann, Jean-Michel
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ikonic, Zoran
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Capellini, Giovanni
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Mantl, Siegfried
|0 P:(DE-Juel1)128609
|b 10
|u fzj
700 1 _ |a Sigg, Hans
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Witzens, Jeremy
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 13
|u fzj
700 1 _ |a Buca, Dan Mihai
|0 P:(DE-Juel1)125569
|b 14
773 _ _ |a 10.1021/acsphotonics.8b01116
|g Vol. 5, no. 11, p. 4628 - 4636
|0 PERI:(DE-600)2745489-7
|n 11
|p 4628 - 4636
|t ACS photonics
|v 5
|y 2018
|x 2330-4022
856 4 _ |u https://juser.fz-juelich.de/record/859332/files/acsphotonics.8b01116.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/859332/files/acsphotonics.8b01116.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:859332
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161180
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166341
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS PHOTONICS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS PHOTONICS : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21