001     859336
005     20240711101519.0
024 7 _ |a 10.1016/j.jcou.2019.01.012
|2 doi
024 7 _ |a 2212-9820
|2 ISSN
024 7 _ |a 2212-9839
|2 ISSN
024 7 _ |a 2128/22706
|2 Handle
024 7 _ |a WOS:000461436500013
|2 WOS
037 _ _ |a FZJ-2019-00204
082 _ _ |a 624
100 1 _ |a Billig, Eric
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Non-Fossil CO2 Recycling - The Technical Potential for the Present and Future Utilization for Fuels in Germany
260 _ _ |a Amsterdam ˜[u.a.]œ
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568029832_22205
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Apart from its negative effects on the climate, CO2 is also a valuable resource, containing carbon – one of the most used and processed elements on Earth. Today, more than 30 Gt of CO2 is emitted each year, with an increasing tendency. Of this, the main share results from the burning of fossil fuels; only a small fraction derives from renewable fuels. In this study the renewable sources of CO2 are examined in terms of their current, near-term (2030) and long-term (2050) potential. Current and potential future market output is based on a literature review concerning the future energy market and policy frameworks. As a reference for the utilization of CO2, three promising fuel options (methanol, methane and future Fischer-Tropsch fuels) are investigated. Along with the production capacities, H2 demand for the conversion was calculated on the basis of chemical process simulations. One aim of this study was to provide a comprehensive overview of the expected range of CO2 recycling from non-fossil sources. It was found that quantities of non-fossil CO2 lie far behind fossil CO2 quantities (6.8% of fossil CO2 provision in 2015). However, with rising demand for CO2-based products and a concurrent decrease in the amount and willingness to use fossil CO2, in the future non-fossil CO2 will grow in importance (reaching up to 23% of fossil CO2 provision in 2050). The study shows that CO2 from non-fossil sources is a reliable and available source of carbon
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Decker, Maximilian
|0 P:(DE-Juel1)171111
|b 1
700 1 _ |a Benzinger, Walter
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ketelsen, Felix
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Peter, Pfeifer
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Peters, Ralf
|0 P:(DE-Juel1)129902
|b 5
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 6
700 1 _ |a Thrän, Daniela
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.jcou.2019.01.012
|g Vol. 30, p. 130 - 141
|0 PERI:(DE-600)2710038-8
|p 130 - 141
|t Journal of CO2 utilization
|v 30
|y 2019
|x 2212-9820
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859336/files/1-s2.0-S221298201830828X-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859336/files/1-s2.0-S221298201830828X-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859336
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171111
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CO2 UTIL : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CO2 UTIL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21