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s are evaluated. The focus of this paper is on non-fossil
ions from fossil power generation and the construction
hown to illustrate the gap between non-fossil and con-
D> potential, and in the case of the cement industry, where
ons are immanent to the production process. Within this
E process CO, generated by the construction industry can be
Jl as sustainable if the possible input energy for the process is
ble (e.g. biochar or waste streams).

e steel industry, one of the major CO,-emitting industries, is not
fidered in this study. Currently, fossil oil, gas and coal are used to
Pduce steel. Unlike the cement industry, there is a CO,-free operation
ode to produce steel [5,6]. The present day use of fossil fuel can be
ompletely substituted by H, derived from renewable energy. This is
technically feasible, as several studies have proven. Similar studies in-
vestigating CO, sources have also found the steel industry to be a de-
pleted CO, source by 2050 [7]. By implication, in such a scenario the
necessary amount of renewable energy must be provided, which cor-
responds to economic barriers. To address these would be beyond the

scope of this study, and therefore we refer to other studies [5].
All the necessary data considered in this study were collected by

official publication databases or calculated on that basis.

2.1. Emissions for CO, from fossil sources

For decades, there has been an increase in energy consumption,
combined with an increase in CO, emissions; a countervailing trend is
currently not observable [8]. Current global yearly anthropogenic CO5
emissions are 32.3 Gt/a (2015) [2]. These emissions mainly originate
from the power, transportation and manufacturing industries. In Fig. 1,
global anthropogenic CO, emissions are illustrated. With 3.64 Gt/a
(2015), the EU contributes contribute approximately 11% to global
emissions and thus are a leading CO, producers [9]. Germany emitted
0.79 Gt, approximately 22% of all EU-28 emissions in 2015, and is
therefore the leading emitter in the EU (followed by the U.K. and
France) and is at rank 6 in the world [10].

For Germany, the greenhouse gas emissions are shown in more
detail in Table 1. The total emissions (CO, + CO, equivalents) in the
year 2015 were ~ 887.4 Mt without LULUCF (land use, land use change,
forestry) [10].

The majority of greenhouse gas emissions are caused by CO,
("88%), followed by methane and nitrous oxide. From 1990 until today,
there was a steady decrease in CO, emissions, with a slowed reduction
rate in recent years. To evaluate the theoretically possible amounts of
CO,, for utilization, the following restrictions were applied to national
trend tables for the German atmospheric emission [10]:
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Blated (17%) and chemical reaction-related (70%) [20]. The

fhare of chemical reaction-related emissions is due to the calci-

reaction of calcium carbonate (CaCOs3) to produce clinker (CaO),
/n in reaction Eq. 1 [10].

CO; < CaO + CO, (€]

The clinker produced with around 70 mass-% - depending on ce-
ment quality [21] — accounts for the largest component of cement.

Since most CO, emissions are due to the immanent reactions that
take place during clinker production, the only possibility to sig-
nificantly reduce emissions in the cement industry is by means of CO,
sequestration [22].

For instance, the CEMCAP project [23] is dedicated to researching
CO,, capture from cement plants. For this purpose, several different CO,
capture technologies suitable for integration into cement production
are assessed theoretically as well as experimentally, namely amine
scrubbing, the oxyfuel process (as a full and partial concept), mem-
brane-assisted liquefaction, chilled ammonia process (CAP) and cal-
cium looping (CaL). The goal of this project is to raise the TRL (tech-
nology readiness levels) of these capture technologies to at least 6.
Furthermore, all technologies should be analysed in a techno-economic
manner to decide which technologies are most suitable and promising
for implementation in existing or future cement plants. [24]

In the following, the technical potential for the sequestration and
utilization of CO, from the German cement industry will be assessed.
The technical potential is the amount that can be obtained with rea-
sonable technical effort, while the economic potential lies within the
technical potential and is restricted by economic constraints.

2.2.1. Future CO, potential

To evaluate the potential for CO, sequestration and utilization in
the cement industry, an inventory of the current emission status will
first be made. The European Pollutant Release and Transfer Register (E-
PRTR) requires that all pollution sources of air, water or soil exceeding
a certain limit report their yearly emissions based on standardized
measurements or calculation methodologies [25]. For CO, emissions,
all facilities with emissions above 100 ktcoo/a are required to report.
According to the E-PRTR, the total amount of CO, emitted by cement
production plants in 2015 totals 24.63 Mtco,. In contravention of the
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O, potential from biomass

Regarding the sustainability and long term perspective, renewable
burces of CO, are evaluated within this study. Typical renewable
sources of CO, are the biochemical conversion (biogas/biomethane
pathway) and thermochemical conversion (gasification and methana-
tion pathway) of biomass. In this study, we focus on the commodity
potential of CO, from biochemical conversion, which is already well-
established in the market.

The biogas/biomethane process shows high potential for future CO,
capture and utilization. The typical biogas process consists of substrate
pre-treatment (mainly crushing), fermentation (anaerobe digestion)
and a post-treatment (mainly the removal of sulphur compounds like
H,S). The produced biogas is a mixture of mainly methane and CO,,
while methane is commonly the major part, constituting between 50%
and 70% [29]. The biogas can either be used directly within a CHP
process (combined heat and power) or upgraded to biomethane [30].
The typical bio-SNG (synthetic natural gas) process of thermochemical
conversion is based on substrate pre-treatment (mainly crushing and
drying), gasification, syngas treatment, methanation and upgrading
[31]. The products of biomethane and bio-SNG are chemically identical
(pure methane) and can be used as a substitute for natural gas. Within
the upgrading process of both pathways (biogas/biomethane and bio-
SNG), the CO, is separated as a by-product. Depending on the up-
grading technology, it is diluted with air or is highly concentrated.
While the biogas and biomethane processes are already established in
the market, the bio-SNG process is still at the research and demon-
stration stage [32].

fiture CO2 emissions by cement production.

2030 2050

0O, after Total emissions after corrections Total emissions after corrections
90%] [-5%; -15%] capture [90%] [-5%; -25%] capture [90%]
/ a Mt oz / @ Mt oz / @ Mt oz / @ Mt oz / @

19.70 17.73 17.24 15.12

Available CO, after Available CO, after
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fants to zero, a continuation of 90% of all existing biogas plants
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® Potential biomass resources according to [37]
® Biogas-relevant streams (thus far unused fractions) were ap-
plied in this study
e Mainly manure and organic waste from kitchens, canteens,
weekly markets as well as cereal straw
e In total, between 16 and 20.5Mt sof biomass (dry matter),
technical potential
e Assuming a constant amount of waste streams through 2050
e Exploitation of 50% of the average waste streams until 2050

new waste stream plants

remaining existing waste stream plants

2026 2029 2032 2035 2038 2041 2044 2047 2050
year

Ints (2016 base) existing biogas upgrading plants (2016 base)

upgrading plants (waste streams only) additional max CO2 from unused waste streams

Fig. 3. Development of CO, (in Mt) from biogas and biogas upgrading through 2050.
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ersion efficiency (7)) only balances energy flows
tant (H,) and product (fuel). The plant efficiency

hll energy flows inside the synthesis plant. Therefore, in
reactant and product energy flows, electrical (E,;) and

Fy (E;) demand for the operation of the plant are also
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LH Vfuel eH1  fuel
LHVyy, ringy,

Plant efficiency:
_ LHVEyer n“lﬂml
plant = T HVip, ety + Eo + En,

3.3.1. Methanation

Methane is a very common energy carrier worldwide. It is the main
component of most resources of “natural gas”. The most common use of
methane or natural gas in Germany is for the supply of heat in house-
holds. Also, natural gas power plants have gained an increasing share of
Germany’s power production mix due to their good dynamic char-
acteristics compared to the predominant existing coal power plants.
Furthermore, natural gas can be used in cars as a substitute for gasoline
in Otto engines. Because of its higher H:C ratio, this technology has the
potential to reduce direct CO, emissions in passenger cars in compar-
ison to conventional gasoline or diesel fuel.

The production of methane on the basis of sustainably-produced H,
via electrolysis would therefore quickly find use in the existing infra-
structure and markets.

Bailera et al. [56] compiled a list of existing power-to-gas projects
and plants in 2017. The largest plant, in operation since 2013, is the
Audi e-gas plant in the northern German town of Werlte. The plant
operates with offshore wind, powering 3 x 2.0 MW, alkaline electro-
lyzers. It is expected to produce around 1000 tons of methane per year
[571.

Process description

The most prominent reactions taking place inside the methanation
reactor are the following:

E upgrading
on surpasses

CO, compared to
ally-reasonable im-

Es must be identified.
1 energy, as is used for

CO, + 4H, < CHy + 2H,0 A H® = —206.3 kJ/mol (€]
CO, + H, & CO + H,0 AgH® = 41.2kJ/mol 5)

Cco + 3H2 And CH4 + HzOARHO = —165.2 k]/mol (6)

Ain CO,, potential from biogas and biogas upgrading The actual quality of the reactions taking place in the reactor is
dependent on pressure, temperature and the infeed ratio of the
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designed and simulated by Otto [63] will
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il reactor under 250 °C and 80 bar. With a Cu/
tem described by Pontzen [64] and a molar

O, conversion to methanol reaches a value
-gas phase-separation, nearly all of the un-
Ecirculated. Table 7 shows the specific energy
he methanol synthesis. [63]
yield the following efficiency factors:

eports a range of 69-89% efficiency for methanol
on a literature review, in accordance with the results

-Tropsch
drocarbons are considered an option for storing renewably
energy. Due to their high volumetric energy density, liquid
the main energy source for heavy load transportation, ship-
1ation, as well as long-distance traffic [65]. In the near future,
lin transportation concepts will continue to be based on liquid
pcarbons. The increasing amount of CO, in the atmosphere must
be taken into account. At this point, climactic changes due to ex-
Esive CO, content can only be countered with modern technological
terventions. There are many different technologies applied for the
production of chemicals from CO,. Amongst these, Fischer-Tropsch (FT)
synthesis is the most prominent route to producing liquid fuels [66].
Process description
FT synthesis is a heterogeneously-catalyzed hydrogenation of CO
with a polymerization character. Mainly liquid hydrocarbons are pro-
duced like diesel fuel, kerosene and gasoline [67]. Due to the catalytic
process, the products of the synthesis are free of sulphur and produce
less soot during combustion [68]. Thus, the diesel dilemma — soot or
NO, emissions — can be leveraged. Synthetic fuels can be used to fulfill
EU6 standards. The catalysts used for the FT synthesis are typically Fe-
based or Co-based. For the FT synthesis, the feed is synthesis gas in a
composition of Hy/CO of slightly less than 2:1. Synthesis gas is con-
ventionally provided through the steam reforming of natural gas. This
process is called the gas-to-liquid (GtL) process. When solid biomass is
gasified, instead of using natural gas as a feedstock, biomass-to-liquid
(BtL) is the technical term. If CO, and power are applied to producing
liquid fuels, power-to-liquid is the relatively new wording [69,70]. All
of these processes mainly differ in the generation of the synthesis gas
(CO/H, mixture) and the adaptation of the right hydrogen to CO ratio.
When CO, is considered a carbon source, a two-step process typi-
cally combines reverse water gas shift (rWGS) and FT synthesis as a
potential process combination. For the reduction of carbon dioxide,
additional hydrogen is required apart from the hydrogen for FT
synthesis. The hydrocarbons produced by the FT process are typically
separated from unreacted feed and gaseous hydrocarbons and, finally,
upgraded via hydrocracking and isomerization to obtain the final pro-
duct.
In the rWGS reaction, CO, is converted into CO in accordance with
the following equation:

COZ + Hy < CO + H20 AH01~298K = 415 kJ/mOl (14)

The reaction is endothermic and therefore thermodynamically-fa-
vored at high temperatures. In the rWGS stoichiometry, the number of
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hows the high potential of the chosen CCU products
Pthane and Fischer-Tropsch fuels) combined with the re-
f demand in Germany. These products were chosen because
by well-established state of the art and good data available,
er technologies like the enzymatic reaction and artificial
hesis were not considered due to the early stage of develop-
d lack of data, but are also a possible future pathway for CCU.
Section 4.1, a detailed analysis of the related H, demand is
cted and evaluated. Concluding, Section 4.2 gives insight into the
ent markets for the chosen CCU products and evaluates its potential
ization for non-fossil CO, within this market.

4.1. Hydrogen demand

As is described above, hydrogen is necessary in order to produce
methane, methanol or Fischer-Tropsch fuels from CO,. Within this
study, the potential sustainable CO, in Germany today and for the years
2030 and 2050 has been calculated and analysed. For each technology
process described in chapter 3.3, the resulting production potential
(methanol, methane and Fischer-Tropsch fuels) were calculated, as well
as the related H, demand, as is shown in Table 9. The conversions were
then computed under the assumption of ideal conditions, while losses
due to non-ideal reaction conditions were not considered.

For 2030 and 2050, the amount of CO, from biogas and biogas
upgrading was merged due to higher uncertainties, which each process
alone would have induced. Here, the total amount of biogas and bio-
methane, and thus of CO,, decreases through 2050 because of the as-
sumed shutdown of energy crop-based plants (compare Section 2.3).
Within the considered scenario, the installation of new plants (mainly
based on organic waste as a substrate) cannot compensate for the de-
crease in capacity and CO, production. Regarding the cement industry,
a decrease of capacity and CO, production due to process optimization
can also be seen. Thus, non-fossil CO, sources, as well as fossil CO,
sources, decreased from 2015 through 2050 (within the framework of
an achievement of the Paris agreement).

As is shown in the table above, the largest production potential
today arises from the cement industry, which therefore would require
the largest amount of hydrogen. The sustainable and economic pro-
duction of H, is one of the limiting factors to actually process sustain-
able CO, into methane, methanol and Fischer-Tropsch fuels.

The highest H, demand is caused by methanation (0.18 kg per kg of
CO,). The methanol production and Fischer-Tropsch fuel production
show almost the same rate of H, demand (0.14 kg of H, per kg CO, for
the methanol process to 0.13kg of H, per kg of CO, for the Fischer-
Tropsch fuel).
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per ton of methanol, this resulted in a turnover of

frearly demand of methane was around 77.2 Mt. Thus, if

fluated and available CO, from biogas and cement were

d to methane, around 16% of fossil-based methane could

ith non-fossil product. Therefore, synthetic methane alone

tion as a substitute for fossil methane. The same conclusion

Bwn for the Fischer-Tropsch fuels. The substitution of these
fed products with products based on non-fossil CO, is not an

e solution alone. It must go along with decreasing consumption
Pssible other substitutes to meet the targeted GHG emission sav-

n contrast to methane and FT fuels, methanol has a much lower
sumption-respective production rate in Germany. The non-fossil
O, produced through methanol could substitute German production
several times over. It must be kept in mind that for this scenario, the
CO, from highly decentralized point sources must be collected and
utilized, and this relates to thus far unknown costs. In conclusion, the
local methane production could be technically substituted by non-fossil
CO,, but with hitherto unknown costs.

For a future outlook of the product demands and production rates,
no reliable data was available. However, trends indicate an increased
consumption in the near term [80,86]. A study commissioned by the
German Federal Ministry of Transport [80,87] give a range of 1275 to
1688 PJ energy demand for fuels in road transport (excluding elec-
trified vehicles), depending on the scenario for the development of
vehicle electrification. This corresponds to 26.6-39.2 Mt of diesel fuel.

5. Conclusions

This paper has shown that CO, from non-fossil sources is a source of
carbon that will continue to be available in the future. On the one hand,
n Germany for methanol, it functions as a resource, while on the other, it (temporally, with the
) [79-85]. option of a constant loop) reduces CO, emissions into the atmosphere.
So far, only a minority of the globally available CO, is used for synthetic
conversion into other commodities, despite the technical feasibility of
price in turnover in bil. € so doing (see chapter 3.2). This indicates what will most likely be a
€/t barrier due to economic, political or acceptance reasons. Here, further
research must be conducted to identify the specific reasons for hin-
drances and to develop counter measures. Additionally, more efforts
must be made to promote the substitution of fossil-based carbon with
non-fossil carbon, e.g. by biochemical conversion or cement produc-
tion, as indicated in this paper.

This study highlights the limits but also the chances of biomass-
respective non-fossil CO, as future carbon sources. It focuses on high
volume products with high turnovers (see Table 11). In a future work,
products with lower turnover but much higher value could also be
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