000859354 001__ 859354
000859354 005__ 20210130000239.0
000859354 0247_ $$2doi$$a10.1111/plb.12893
000859354 0247_ $$2ISSN$$a0011-9970
000859354 0247_ $$2ISSN$$a0044-5983
000859354 0247_ $$2ISSN$$a0365-9631
000859354 0247_ $$2ISSN$$a0932-8629
000859354 0247_ $$2ISSN$$a1365-2001
000859354 0247_ $$2ISSN$$a1435-8603
000859354 0247_ $$2ISSN$$a1438-8677
000859354 0247_ $$2pmid$$apmid:30098100
000859354 0247_ $$2WOS$$aWOS:000455045100009
000859354 0247_ $$2altmetric$$aaltmetric:46472390
000859354 037__ $$aFZJ-2019-00222
000859354 082__ $$a580
000859354 1001_ $$0P:(DE-HGF)0$$aDong, Y.$$b0
000859354 245__ $$aThe Arabidopsis THADA homologue modulates TOR activity and cold acclimation
000859354 260__ $$aOxford [u.a.]$$bWiley- Blackwell$$c2019
000859354 3367_ $$2DRIVER$$aarticle
000859354 3367_ $$2DataCite$$aOutput Types/Journal article
000859354 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547621926_9151
000859354 3367_ $$2BibTeX$$aARTICLE
000859354 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859354 3367_ $$00$$2EndNote$$aJournal Article
000859354 520__ $$a Low temperature is one of the most important environmental factors that affect global survival of humans and animals and equally importantly the distribution of plants and crop productivity. Survival of metazoan cells under cold stress requires regulation of the sensor‐kinase Target Of Rapamycin (TOR). TOR controls growth of eukaryotic cells by adjusting anabolic and catabolic metabolism. Previous studies identified the Thyroid Adenoma Associated (THADA) gene as the major effect locus by positive selection in the evolution of modern human adapted to cold. Here we investigate the role of THADA in TOR signaling and cold acclimation of plants. We applied BLAST searches and homology modeling to identify the AtTHADA (AT3G55160) in Arabidopsis thaliana as the highly probable orthologue protein. Reverse genetics approaches were combined with immunological detection of TOR activity and metabolite profiling to address the role of the TOR and THADA for growth regulation and cold acclimation. Depletion of the AtTHADA gene caused complete or partial loss of full‐length mRNA, respectively, and significant retardation of growth under non‐stressed conditions. Furthermore, depletion of AtTHADA caused hypersensitivity towards low‐temperatures. Atthada displayed a lowered energy charge. This went along with decreased TOR activity, which offers a molecular explanation for the slow growth phenotype of Atthada. Finally, we used TOR RNAi lines to identify the de‐regulation of TOR activity as one determinant for sensitivity towards low‐temperatures. Taken together our results provide evidence for a conserved function of THADA in cold acclimation of eukaryotes and suggest that cold acclimation in plants requires regulation of TOR.
000859354 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000859354 536__ $$0G:(DE-Juel1)BMBF-031A053A$$aDPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)$$cBMBF-031A053A$$fDeutsches Pflanzen Phänotypisierungsnetzwerk$$x1
000859354 588__ $$aDataset connected to CrossRef
000859354 7001_ $$0P:(DE-HGF)0$$aTeleman, A. A.$$b1
000859354 7001_ $$0P:(DE-Juel1)169447$$aJedmowski, C.$$b2
000859354 7001_ $$00000-0001-7790-4022$$aWirtz, M.$$b3
000859354 7001_ $$00000-0002-6238-4818$$aHell, R.$$b4$$eCorresponding author
000859354 773__ $$0PERI:(DE-600)2026390-9$$a10.1111/plb.12893$$gVol. 21, no. S1, p. 77 - 83$$nS1$$p77 - 83$$tPlant biology$$v21$$x1438-8677$$y2019
000859354 8564_ $$uhttps://juser.fz-juelich.de/record/859354/files/Dong_et_al-2019-Plant_Biology.pdf$$yRestricted
000859354 8564_ $$uhttps://juser.fz-juelich.de/record/859354/files/Dong_et_al-2019-Plant_Biology.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859354 909CO $$ooai:juser.fz-juelich.de:859354$$pVDB
000859354 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169447$$aForschungszentrum Jülich$$b2$$kFZJ
000859354 9101_ $$0I:(DE-HGF)0$$60000-0001-7790-4022$$aExternal Institute$$b3$$kExtern
000859354 9101_ $$0I:(DE-HGF)0$$60000-0002-6238-4818$$aExternal Institute$$b4$$kExtern
000859354 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000859354 9141_ $$y2019
000859354 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859354 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859354 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859354 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859354 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT BIOLOGY : 2017
000859354 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859354 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859354 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859354 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859354 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859354 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859354 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000859354 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000859354 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000859354 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000859354 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859354 920__ $$lyes
000859354 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000859354 980__ $$ajournal
000859354 980__ $$aVDB
000859354 980__ $$aI:(DE-Juel1)IBG-2-20101118
000859354 980__ $$aUNRESTRICTED