001     859354
005     20210130000239.0
024 7 _ |a 10.1111/plb.12893
|2 doi
024 7 _ |a 0011-9970
|2 ISSN
024 7 _ |a 0044-5983
|2 ISSN
024 7 _ |a 0365-9631
|2 ISSN
024 7 _ |a 0932-8629
|2 ISSN
024 7 _ |a 1365-2001
|2 ISSN
024 7 _ |a 1435-8603
|2 ISSN
024 7 _ |a 1438-8677
|2 ISSN
024 7 _ |a pmid:30098100
|2 pmid
024 7 _ |a WOS:000455045100009
|2 WOS
024 7 _ |a altmetric:46472390
|2 altmetric
037 _ _ |a FZJ-2019-00222
082 _ _ |a 580
100 1 _ |a Dong, Y.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The Arabidopsis THADA homologue modulates TOR activity and cold acclimation
260 _ _ |a Oxford [u.a.]
|c 2019
|b Wiley- Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547621926_9151
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Low temperature is one of the most important environmental factors that affect global survival of humans and animals and equally importantly the distribution of plants and crop productivity. Survival of metazoan cells under cold stress requires regulation of the sensor‐kinase Target Of Rapamycin (TOR). TOR controls growth of eukaryotic cells by adjusting anabolic and catabolic metabolism. Previous studies identified the Thyroid Adenoma Associated (THADA) gene as the major effect locus by positive selection in the evolution of modern human adapted to cold. Here we investigate the role of THADA in TOR signaling and cold acclimation of plants. We applied BLAST searches and homology modeling to identify the AtTHADA (AT3G55160) in Arabidopsis thaliana as the highly probable orthologue protein. Reverse genetics approaches were combined with immunological detection of TOR activity and metabolite profiling to address the role of the TOR and THADA for growth regulation and cold acclimation. Depletion of the AtTHADA gene caused complete or partial loss of full‐length mRNA, respectively, and significant retardation of growth under non‐stressed conditions. Furthermore, depletion of AtTHADA caused hypersensitivity towards low‐temperatures. Atthada displayed a lowered energy charge. This went along with decreased TOR activity, which offers a molecular explanation for the slow growth phenotype of Atthada. Finally, we used TOR RNAi lines to identify the de‐regulation of TOR activity as one determinant for sensitivity towards low‐temperatures. Taken together our results provide evidence for a conserved function of THADA in cold acclimation of eukaryotes and suggest that cold acclimation in plants requires regulation of TOR.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a DPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)
|0 G:(DE-Juel1)BMBF-031A053A
|c BMBF-031A053A
|f Deutsches Pflanzen Phänotypisierungsnetzwerk
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Teleman, A. A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jedmowski, C.
|0 P:(DE-Juel1)169447
|b 2
700 1 _ |a Wirtz, M.
|0 0000-0001-7790-4022
|b 3
700 1 _ |a Hell, R.
|0 0000-0002-6238-4818
|b 4
|e Corresponding author
773 _ _ |a 10.1111/plb.12893
|g Vol. 21, no. S1, p. 77 - 83
|0 PERI:(DE-600)2026390-9
|n S1
|p 77 - 83
|t Plant biology
|v 21
|y 2019
|x 1438-8677
856 4 _ |u https://juser.fz-juelich.de/record/859354/files/Dong_et_al-2019-Plant_Biology.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/859354/files/Dong_et_al-2019-Plant_Biology.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:859354
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169447
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0001-7790-4022
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0002-6238-4818
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT BIOLOGY : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21