000859356 001__ 859356
000859356 005__ 20220930130205.0
000859356 0247_ $$2doi$$a10.3389/fnsys.2018.00068
000859356 0247_ $$2Handle$$a2128/21486
000859356 0247_ $$2pmid$$apmid:30687028
000859356 0247_ $$2WOS$$aWOS:000460573600001
000859356 0247_ $$2altmetric$$aaltmetric:53721517
000859356 037__ $$aFZJ-2019-00224
000859356 082__ $$a610
000859356 1001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr$$b0$$eCorresponding author$$ufzj
000859356 245__ $$aWhat Can Computational Models Contribute to Neuroimaging Data Analytics?
000859356 260__ $$aLausanne$$bFrontiers Research Foundation$$c2019
000859356 3367_ $$2DRIVER$$aarticle
000859356 3367_ $$2DataCite$$aOutput Types/Journal article
000859356 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548859582_26602
000859356 3367_ $$2BibTeX$$aARTICLE
000859356 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859356 3367_ $$00$$2EndNote$$aJournal Article
000859356 500__ $$aThe authors gratefully acknowledge helpful discussions withViktor Jirsa and Gustavo Deco. This work was supportedby the Deutsche Forschungsgemeinschaft (DFG, EI 816/11-1),the National Institute of Mental Health (R01-MH074457), theHelmholtz Portfolio Theme Supercomputing and Modeling forthe Human Brain and the European Union’s Horizon 2020Research and Innovation Programme under Grant Agreement720270 (HBP SGA1) and 785907 (HBP SGA2).
000859356 520__ $$aOver the past years, nonlinear dynamical models have significantly contributed to the general understanding of brain activity as well as brain disorders. Appropriately validated and optimized mathematical models can be used to mechanistically explain properties of brain structure and neuronal dynamics observed from neuroimaging data. A thorough exploration of the model parameter space and hypothesis testing with the methods of nonlinear dynamical systems and statistical physics can assist in classification and prediction of brain states. On the one hand, such a detailed investigation and systematic parameter variation are hardly feasible in experiments and data analysis. On the other hand, the model-based approach can establish a link between empirically discovered phenomena and more abstract concepts of attractors, multistability, bifurcations, synchronization, noise-induced dynamics, etc. Such a mathematical description allows to compare and differentiate brain structure and dynamics in health and disease, such that model parameters and dynamical regimes may serve as additional biomarkers of brain states and behavioral modes. In this perspective paper we first provide very brief overview of the recent progress and some open problems in neuroimaging data analytics with emphasis on the resting state brain activity. We then focus on a few recent contributions of mathematical modeling to our understanding of the brain dynamics and model-based approaches in medicine. Finally, we discuss the question stated in the title. We conclude that incorporating computational models in neuroimaging data analytics as well as in translational medicine could significantly contribute to the progress in these fields.
000859356 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000859356 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x1
000859356 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000859356 588__ $$aDataset connected to CrossRef
000859356 7001_ $$0P:(DE-Juel1)164577$$aManos, Thanos$$b1$$ufzj
000859356 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b2$$ufzj
000859356 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b3$$ufzj
000859356 773__ $$0PERI:(DE-600)2453005-0$$a10.3389/fnsys.2018.00068$$gVol. 12, p. 68$$p68$$tFrontiers in systems neuroscience$$v12$$x1662-5137$$y2019
000859356 8564_ $$uhttps://juser.fz-juelich.de/record/859356/files/2018-0136460-3.pdf
000859356 8564_ $$uhttps://juser.fz-juelich.de/record/859356/files/2018-0136460-3.pdf?subformat=pdfa$$xpdfa
000859356 8564_ $$uhttps://juser.fz-juelich.de/record/859356/files/fnsys-12-00068.pdf$$yOpenAccess
000859356 8564_ $$uhttps://juser.fz-juelich.de/record/859356/files/fnsys-12-00068.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859356 8767_ $$82018-0136460-3$$92018-12-17$$d2019-01-14$$eAPC$$jDeposit$$lDeposit: Frontiers$$z977.50 USD
000859356 909CO $$ooai:juser.fz-juelich.de:859356$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000859356 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b0$$kFZJ
000859356 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164577$$aForschungszentrum Jülich$$b1$$kFZJ
000859356 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b2$$kFZJ
000859356 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
000859356 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000859356 9141_ $$y2019
000859356 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859356 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000859356 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000859356 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000859356 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000859356 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859356 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859356 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000859356 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859356 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859356 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000859356 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859356 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000859356 980__ $$ajournal
000859356 980__ $$aVDB
000859356 980__ $$aUNRESTRICTED
000859356 980__ $$aI:(DE-Juel1)INM-7-20090406
000859356 980__ $$aAPC
000859356 9801_ $$aAPC
000859356 9801_ $$aFullTexts