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Over the past years, nonlinear dynamical models have significantly contributed to the
general understanding of brain activity as well as brain disorders. Appropriately validated
and optimized mathematical models can be used to mechanistically explain properties
of brain structure and neuronal dynamics observed from neuroimaging data. A thorough
exploration of the model parameter space and hypothesis testing with the methods
of nonlinear dynamical systems and statistical physics can assist in classification and
prediction of brain states. On the one hand, such a detailed investigation and systematic
parameter variation are hardly feasible in experiments and data analysis. On the other
hand, the model-based approach can establish a link between empirically discovered
phenomena and more abstract concepts of attractors, multistability, bifurcations,
synchronization, noise-induced dynamics, etc. Such a mathematical description allows
to compare and differentiate brain structure and dynamics in health and disease, such
that model parameters and dynamical regimes may serve as additional biomarkers
of brain states and behavioral modes. In this perspective paper we first provide very
brief overview of the recent progress and some open problems in neuroimaging data
analytics with emphasis on the resting state brain activity. We then focus on a few recent
contributions of mathematical modeling to our understanding of the brain dynamics and
model-based approaches in medicine. Finally, we discuss the question stated in the title.
We conclude that incorporating computational models in neuroimaging data analytics as
well as in translational medicine could significantly contribute to the progress in these
fields.

Keywords: neuroimaging, resting state, mathematical models, brain dynamics, functional connectivity, simulation,
high-performance computing

1. DATA-DRIVEN APPROACH

Advances in neuroimaging techniques and data analytics methods have led to a rapid advancement
in the description of structural and functional properties of brain networks. The anatomical
architecture of brain networks, i.e., their structural connectivity (SC), can be inferred from diffusion
weighted magnetic resonance imaging (dwMRI). In particular, fiber tracts reconstructed through
tractography algorithms can serve as proxies for physical connections between brain regions at
the meso- and macroscopic level (though see Jones et al., 2013; Thomas et al., 2014; Maier-Hein
et al., 2017 for a discussion on the limitations of fiber reconstruction from dwMRI). Such
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structural information thus contributes a description of the
underlying physical organization of the brain on top of which
the time dynamics of neuronal activity can emerge. The latter
can be measured by indirect, blood flow-based methods such as
functional MRI (fMRI) and positron emission tomography (PET)
as well as more direct recording of neuronal activity through
electroencephalography ~ (EEG),  magnetoencephalography
(MEG) or as local field potential (LFP) measured by implanted
electrodes. While these methods differ substantially with
respect to their spatial and temporal resolution (cf. Horwitz
et al., 2000; Bandettini, 2009), they can all be used in two
fundamental contexts in task-related and task-free examinations.
Classically, subjects perform an active sensory, cognitive or
motor paradigm while brain activity is recorded. This allows to
probe context-dependent modulations of regional activity and
network interactions, reflecting the effects of the respective tasks
on functional and effective connectivity (Bressler and Menon,
2010; Park and Friston, 2013).

While massively growing our knowledge on functional
specialization and integration over more than two decades, task-
based imaging also suffers from several drawbacks. Brain activity
in a task setting is bound to the particular experimental context
and hence limited in generalizability, re-usability as well as
in practicality for imaging large cohorts or a clinical setting.
Consequently, much focus has been devoted more recently to
the acquisition and analysis of what has been termed the “task-
free” or “resting-state” activity of the brain. Making use of the
constantly ongoing mental processes and the fact that brain
networks hence coordinate their activity also in the absence of
an explicit behavioral task, resting-state imaging (Biswal et al.,
1995) has yielded new perspectives in the study of large cohorts
and patient populations as well as establishing data-sharing
in the field of neuroimaging. Consequently, large databases
collected thousands of brain imaging records and behavioral
information (Van Essen et al., 2013; Caspers et al., 2014). In the
most common approach, i.e., resting-state f{MRI, the temporal
fluctuations of the blood oxygen level-dependent (BOLD) signals
are related to each other by clear and robust correlation (e.g., by
using Pearson correlation coefficient) across what are assumed
to be functionally related brain regions coordinating their
activity during sensory, motor or cognitive brain functions, i.e.,
functional connectivity (FC) between them (Biswal et al., 1995;
Park and Friston, 2013; Varikuti et al., 2017).

Resting-state FC analysis has without doubt revolutionized
the field of human brain imaging and has led to the presence
of many new insights into inter-individual variability and the
pathophysiology of brain disorders. For example, differences in
the group-average resting-state FC patterns have been shown for
disorders such as Parkinson’s and Alzheimer’s disease, stroke,
depression and schizophrenia (Sorg et al., 2007; Konrad and
Fickhoff, 2010; Tahmasian et al., 2015). Moreover, it has been
demonstrated, that individual patterns of BOLD correlations
in the absence of a structured task allow for the individual
classification of previously unseen subjects as patients or
healthy controls with good accuracy (Arbabshirani et al., 2017;
Plaschke et al., 2017). Together with the fact that resting-state
measurements are attainable even in comparably ill patients,

this opens an avenue for a clinical application toward objective
diagnosis and may even allow to provide prognoses of disease
development on an individual basis (Woo et al.,, 2017; Yahata
et al.,, 2017). Finally, investigating FC patterns of spontaneous
brain activity at the single-subject level, individualized targets
for interventional approaches using invasive or non-invasive
neuromodulations may provide a road to more individualized,
neurobiologically informed treatments (Fox et al., 2014).

In healthy subjects, resting-state FC can be used to build
data-driven connectome-based predictive models to differentiate
between subjects and to predict individual behavior from the
brain activity (Shen et al., 2017). Robust and reliable individual
variability of the FC profiles at “rest” permits a relatively accurate
identification of individual subjects from a large group (Finn
et al.,, 2015). The contemporary research in this framework is
focused on prediction of fluid intelligence of individual subjects,
performance in specific tasks, personality traits and brain aging
from resting-state fMRI data (Dosenbach et al.,, 2010; Finn et al,,
2015; Dubois and Adolphs, 2016; Tavor et al., 2016; Liem et al.,
2017). This also has an important clinical relevance, for instance,
in distinguishing between normal aging and disease.

In spite of its undisputed success, however, resting-state
fMRI is also a field marked by substantial controversy over the
appropriate analyses methods and the interpretation of observed
patterns. For the task-based imaging there could exist a relatively
clear time frame and related expectations, where and what is
going to happen in the brain and its relation to behavioral states
across subjects. For the resting-state measurements, the absence
of an external reference by experimentally defined time-points
and behavioral states together with enhanced inter-individual
variability renders the whole field devoid of any gold-standard or
ground-truth. This makes the resting-state data processing and
analysis and interpretation of results even more challenging than
for the task-based paradigm.

It may hence not surprise that many of the most cited
neuroimaging papers over the last years pertain to the
characterization of (potential) artifacts, evaluation of processing
or analysis methods and inferences that can be drawn from
these (Murphy et al, 2013; Satterthwaite et al,, 2013; Power
et al., 2014; Salimi-Khorshidi et al., 2014). For example, it is
generally agreed that artificial sources of variance caused by
subject movement as well as by various sources of physiological
noise (such as heartbeat, breathing) may strongly influence the
observed BOLD correlations and need to be accounted for. How
this goal is best achieved, though, is a matter of conjecture
as there is no gold standard given that we don’t know how
the BOLD signal would look like without these influences.
Consequently, methods for characterizing and removing what
should be considered structured noise within resting-state
time series have, e.g., proxied the effects of movement for
example by differences between high- and low-moving subjects
(Satterthwaite et al., 2013). There is an ongoing discussion on
how to deal with global signal changes, as it can be shown that
when these are not accounted for, virtually all brain regions
exhibit functional correlations with each other while removal
of global signals leads to pronounced anti-correlations (Varikuti
et al,, 2017). The latter are questioned as spurious by some
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(Murphy et al., 2009) and highlighted as antagonistic large-scale
systems by others (Fox et al, 2009). Finally, in particular in
the context of predicting individual phenotypes and ultimately
precision medicine, one of the key prerequisites is to reduce
the dimensionality from all possible interactions among >
200.000 voxels onto a tractable number of region-by-region
connections. This is usually done through referencing to a brain
atlas providing the respective parcellation, but unfortunately,
there is no general consensus as to which parcellation would
be most appropriate, see the papers (Thirion et al, 2014;
Fickhoff et al.,, 2018a,b) for review and references therein.
In fact, both the approach for atlas generation with respect
to imaging modalities and parcellation techniques (resting-
state, structure, geometry, independent/principal components
analysis (ICA/PCA), clustering etc.) and the ensuing granularity
vary considerably across studies performing connectome-based
resting-state analyses.

In summary, while the potential of resting-state fMRI to
contribute to our understanding of the normal and diseased brain
is extremely high, many questions on how to attain this goal are
still unresolved.

2. MODEL-BASED APPROACH

The achievements of the data-driven approach discussed above
can significantly be extended if mathematical models get involved
in the analysis to gain possible mechanistic explanations of the
dynamics and properties of the brain resting-state networks
(RSN). A thorough exploration of possible dynamical repertoires
that the models can support and their relation to the phenomena
observed in the data can help to formulate predictions and
hypotheses that can serve as a basis for further experimental
investigation and data analysis. A number of models of different
complexity have been suggested for RSN neural population
dynamics including phase oscillators (Cabral et al., 2011; Ponce-
Alvarez et al., 2015), limit-cycle oscillators (Bettinardi et al., 2017;
Deco et al,, 2017), mean-field and spiking neuron models taking
into account contributions of excitatory and inhibitory neurons
located within the network nodes (Deco and Jirsa, 2012; Deco
et al., 2014b; Glomb et al., 2017), and others (Deco et al., 2008;
Sanz-Leon et al., 2015). The individual nodes can be coupled
to brain networks, where the inter-node connections can be
derived from empirical data, which was coined as the brain
structural connectome (Sporns et al., 2005). Such SC obtained
from diffusion weighted imaging and tract tracing studies can be
used to build a graph of the brain network defining an underlying
topological structure of the model network (Knock et al., 2009;
Bullmore and Bassett, 2011; Park and Friston, 2013).

The model parameters can be calibrated in such a way
that the model dynamics closely replicates that of the brain
networks extracted from the empirical data. Realistic power
spectra and fluctuations of BOLD signal were obtained from the
models simulating underlying electrical activity of the neuronal
populations (Ghosh et al., 2008; Deco et al., 2009; Deco and
Jirsa, 2012; Schirner et al., 2018), where an advance modeling
can also be used to infer the neurophysiological mechanisms

underlying neuroimaging signals (Schirner et al, 2018). At
this, parameters of noise intensity, time delay in coupling,
global coupling strength, and excitation-inhibition balance may
play a crucial role. It was found that there can exist optimal
parameter settings, where the matrix of empirical FC strongly
correlates with that calculated from the data generated by the
model (Deco and Jirsa, 2012; Deco et al, 2013; Nakagawa
et al, 2013). The maximal correspondence between model
and empirical data can emerge when the model is close to a
critical point at which the system may undergo a bifurcation,
a sudden qualitative change of its dynamics and engage in
a multistable regime that is highly sensitive to perturbations
(Deco et al., 2013; Golos et al., 2015; Cocchi et al., 2017).
Noise-driven exploration of the state space in the vicinity of
attractors allows the emergence of dynamics observed in RSN
activity (Ghosh et al., 2008; Deco et al.,, 2012, 2013; Golos et al.,
2015).

FC patterns may strongly vary in time as we discuss below,
and the static description of FC matrix obtained over long epochs
(=5 min) is distinguished by so-called dynamic FC reflecting
time variations of correlations and characterized by the ongoing
switching of network patterns (Hutchison et al., 2013; Allen
et al.,, 2014; Cabral et al.,, 2017b). Analysis of dynamic FC for
patients with schizophrenia and bipolar disorder has revealed
different switching regimes as compared to healthy controls
(Damaraju et al., 2014; Rashid et al., 2014), which cannot be
obtained by the static connectivity analysis. The extraction,
analysis, interpretation and application of dynamic FC are in the
focus of investigation nowadays, see the recent comprehensive
review (Preti et al., 2017).

In the framework of model-based approach, several recent
studies (Hansen et al., 2015; Deco and Kringelbach, 2016; Deco
et al., 2017; Jobst et al., 2017) modeled dynamic FC and showed
that non-stationary connectivity dynamics can demonstrate a
rich spatio-temporal structure and fast switching between a
few discrete states as observed in empirical data. These studies
also reported that the brain at rest operates at a maximal
level of metastability (Deco and Kringelbach, 2016; Deco et al,,
2017; Jobst et al., 2017), which can be referred to as an out-
of-equilibrium state characterized by a pronounced variability
of phase configurations of the system and switching between
different regimes of collective dynamics. It was suggested to
be measured by the standard deviation of the Kuramoto
order parameter reflecting the extent of synchronization in the
networks across time (Deco and Kringelbach, 2016; Deco et al,,
2017; Jobst et al., 2017). The concept of maximal metastability for
the RSN in the first place implies a state of maximum network
switching and enhanced variability of synchronization in resting-
state brain activity. Metastability is a fundamental property
of transient brain dynamics and cognitive processes such as
sequential decision making which can be modeled by a stable
heteroclinic cycle involving complex metastable brain states
(Rabinovich et al., 2008; Tognoli and Kelso, 2014). Therefore,
fitting the extent of metastability and the properties of dynamic
FC of the model to empirical data can provide an additional tool
for validation and optimization of whole-brain models (Deco and
Kringelbach, 2016; Deco et al., 2017; Jobst et al., 2017).
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The model-based approach can effectively be used for
addressing neuropsychiatric disorders aiming to describe disease
mechanisms (Deco and Kringelbach, 2014; Stephan et al., 2015).
One example is schizophrenia which can be viewed as a brain
network disorder (Friston and Frith, 1995; Calhoun et al,
2009; Lynall et al., 2010; van den Heuvel and Fornito, 2014).
Simulations of whole-brain computational models demonstrated
that clinical symptoms and changes in FC patterns observed in
empirical data can be accounted for by a variation (decrease) of
the global coupling strength in the model (Cabral et al., 2012b,
2013). On the other hand, the average power and variance of
the global brain signal may increase in schizophrenia, which
was replicated by dynamics of a computational model when
local or global coupling strength increases (Yang et al., 2014;
Anticevic et al., 2015). Modeling approaches can also be used
to illustrate how the changes in SC due to long-term deep
brain stimulation (DBS) in patients with Parkinson’s disease
(PD) can be reflected in resting-state brain dynamics and
FC (van Hartevelt et al, 2014). Whole-brain computational
models can help to reveal acute effects of DBS on resting-state
brain dynamics when comparing DBS-On and DBS-Oft regimes
(Saenger et al, 2017). When comparing model parameters
of local and global coupling as well as conduction velocity
fitted to the functional data of stroke patients and healthy
controls, a significant difference between these two parameter
sets can be observed (Falcon et al., 2016). Furthermore,
the coupling parameters correlated with long-term motor
gains during recovery after stroke, which indicates that the
model parameters can serve as biomarkers with potential
predictive power for recovery after stroke (Falcon et al,
2016).

The potential of brain network modeling for diagnose,
prognosis and treatment of neurological and psychiatric diseases
is probably the most important perspective of this approach. The
growing field of precision medicine is directed toward disease
prevention and more predictive and personalized medicine as
opposed to the treatment of patients mostly based on their
segregation with respect to disease type or subtype (Duffy,
2016). Such personalized approach to the medical treatment
would in particular require an involvement of personalized
predictive computational models of individual patients. In this
framework the concept of the virtual epileptic patient has
recently been proposed (Jirsa et al., 2017; Proix et al., 2017),
where the development of a personalized mathematical model
for an epileptic patient was illustrated step by step. Such a
model is based on the personalized SC and other indicators
(e.g., lesions, epileptogenic zones, etc) and can be validated
and optimized to reflect, explain and predict epileptic seizure
propagation (Proix et al., 2017). Systematic explorations of
the model parameter space can give an insight into how the
clinically relevant parameters, such as neuronal excitability and
coupling strength, might influence the number of seizures, their
localization and propagation. Although the relation between the
changes of the model parameters and impacts of the clinical
intervention is not always evident, the models can nevertheless
serve as a test bed for clinical hypothesis testing and thus
provide the clinicians with an additional tool for hypothesis

building and decision-making at brain intervention strategies.
The knowledge obtained from the model-based investigation
and data fitting, for example, for localization and extent of the
epileptogenic zone can be combined with a data-driven approach
and the experience of clinicians. This can contribute to the
improvement of diagnosis and surgery outcome as well as to
development of novel therapies (Jirsa et al.,, 2017; Proix et al.,
2017).

Applying the model-based approach, brain stimulation
techniques have been developed for counteracting abnormal
neuronal synchronization characteristic for some neurological
disorders including PD and tinnitus by desynchronization (Tass,
2003; Tass and Majtanik, 2006; Popovych and Tass, 2012;
Ebert et al, 2014; Manos et al, 2018a,b). Desynchronizing
stimulation techniques have been designed, tested and optimized
with the help of mathematical models of neuronal populations.
Parameters of stimulation intensity, timing and shape of
the stimulation signal have systematically been varied and
evaluated, which is hardly feasible in experimental and
clinical setting. The hypotheses and predictions drawn from
the modeling studies have successfully been tested in pre-
clinical and clinical studies (Tass et al., 2012a,b; Adamchic
et al, 2014) for different stimulation modalities including
electrical DBS for PD and noninvasive acoustic stimulation for
tinnitus.

A recent shift toward a closed-loop stimulation paradigm
for DBS (Little et al., 2013; Rosa et al., 2015) has led to a
more efficient counteracting of disease symptoms. The same
clinical effects can be achieved for a significant reduction of the
amount of the delivered stimulation current if the stimulation
is administered when necessary in a demand-controlled way.
This was preceded by theoretical development and modeling
of closed-loop stimulation methods (Rosenblum and Pikovsky,
2004; Popovych et al., 2005, 2006). Model-based approach can
further be used to optimize and adapt the stimulation techniques
for clinical application, where they can be tested for realistic
DBS signals (Popovych et al., 2017a,b; Popovych and Tass, 2018).
Optimal parameter values can be found based on a thorough scan
of parameter space of the models.

As for the research driven by the data, the model-based
approach is not limited to the investigations of diseased states.
Large-scale whole-brain computational models can provide an
insight into how resting-state brain activity and FC patterns
may evolve in aging (Nakagawa et al, 2013; Naik et al,
2017). Dynamics of the model and its parameters, for example,
the coupling strength and the delay in coupling demonstrate
consistent differences when comparing groups of young and old
adults with high and low performance in cognitive tasks (Naik
et al., 2017), which can be considered as potential model-based
biomarkers for healthy aging.

In summary, mathematical dynamical models can be built
based on brain structure and activity derived from the empirical
data and can potentially be applied to any topic addressed by
data-driven analysis. The derived models can however provide
additional information and even explanations of the observed
phenomena, which can contribute to our understanding of brain
dynamics and treatment of diseases.
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3. ENHANCING DATA ANALYTICS BY
MODELS

To build, validate and investigate models of brain networks, a
number of computational tools have been developed including
NEURON, NEST, BRIAN, and The Virtual Brain (TVB)
(Carnevale and Hines, 2006; Gewaltig and Diesmann, 2007;
Goodman and Brette, 2009; Sanz Leon et al., 2013), which
combine biological relevance with up-to-date computational
algorithms for high-performance computational clusters. For
example, TVB is an open platform, where large-scale brain
network models can be derived from the raw multi-modal
imaging data, and an optimal match between empirical and
simulated data, e.g., (dynamic) FC of RSN, can be reached by an
appropriate parameter calibration (Ritter et al., 2013; Sanz Leon
et al., 2013; Sanz-Leon et al., 2015; Falcon et al., 2016).

The discussed dynamical models of brain networks are built
on empirical SC establishing in such a way a natural link between
brain structure and function. For sufficiently long scanning
sessions, patterns of static FC of the spontaneous brain dynamics
correlate with patterns of SC (Hagmann et al., 2008; Honey et al.,
2009; Marrelec et al., 2016), and some properties of them can
be inferred from each other (Hermundstad et al., 2013). This
is also feasible for dynamic FC (Marrelec et al., 2016; Cabral
et al., 2017b). However, the largely invariant SC can support
many different FC patterns making the interdependence between
them rather complicated (Park and Friston, 2013; Marrelec et al.,
2016; Cabral et al., 2017a). For example, FC patterns most
frequently observed in healthy older adults with good cognitive
performance are less correlated with SC as compared to the
connectivity patterns of poorly performing subjects (Cabral et al.,
2017b).

Models can help to understand the correspondence between
structural and functional connectivity (Honey et al, 2009).
Homogeneous coupling strength and delay in coupling may lead
to a strong structure-function correlation, whereas distributed
delays and coupling strength between network nodes may
cause a discrepancy between the observed activity patterns and
underlying connectivity (Popovych et al, 2013; Ton et al,
2014). Therefore, one conclusion derived from theses modeling
studies is that SC used for data analytics and mathematical
modeling should be as precise as possible, especially, with regard
to strength, delay and directionality of connections. This was
also addressed by comparing large-scale brain simulations with
models built on weighted undirected and directed structural
connections (Knock et al., 2009), where the simulation in the
latter case demonstrated more biologically realistic results.

Since investigation of the models is not restricted by the
measured data, model parameters can be varied in a broad range
to mimic possible scenarios of the evolution of brain states. For
example, by modeling the hypothesis of structural disconnection
in schizophrenia (Friston and Frith, 1995; Calhoun et al,
2009; Lynall et al., 2010; van den Heuvel and Fornito, 2014),
parameters of the computational model can be varied from
the states of strong to weak coupling or even by completely
removing anatomical connections in the model (Cabral et al.,

2012a). Such a computational experiment revealed changes in FC
patterns also observed in empirical data (Lynall et al., 2010) and
led to conclusion that disconnection-related neuropathologies
can induce qualitatively similar changes in resting-state brain
activity (Cabral et al., 2012a). From the opposite perspective, the
modeling approach can be used to optimize SC configurations
to obtain the best fit with FC from measured data by adding
a few additional links and rewiring existing connections (Deco
et al., 2014a). Such an approach may strongly contribute to
the determination of empirical SC by predicting and suggesting
possible anatomical links and their characteristics that are
difficult to measure or to estimate from empirical data.

The above examples illustrate how the modeling can
contribute to a mechanistic explanation of the structural and
functional properties of the brain and their interrelation. With
such an approach the emergent brain dynamics including resting
state can be explained in terms of a few generic bifurcations
(Cocchi et al, 2017) and assigned to a particular range of
parameters that may vary depending on the brain state (Deco
et al, 2013, 2017; Jobst et al, 2017). These parameters may
have a well-founded relation to the brain characteristics such as
global and local coupling, communication delay, noise intensity,
heterogeneity of individual node dynamics and its excitation-
inhibition balance as well as external input or stimulation
(Ghosh et al., 2008; Deco et al., 2009, 2014b; Popovych and
Tass, 2012). It is thus very important to perform a detailed
investigation of the derived models, which could be assisted
by the computational tools mentioned above. Several attempts
in this direction have explored the emergence of multistability
in the large-scale brain models (Deco and Jirsa, 2012; Golos
et al., 2015; Hansen et al., 2015). The concepts of multi- and
meta-stability, which distinguish themselves by the coexistence
of either attractors or saddles, respectively (Cocchi et al., 2017),
are the main model-based hypotheses of the emergence of the
resting-state fluctuations of the BOLD signals and FC matrices
(Deco et al., 2012, 2017; Deco and Kringelbach, 2016).

Furthermore, models can help to address the question on how
exactly the brain parcellation (number and density of network
nodes) and local connectivity utilized for the analysis of the
brain dynamics may affect the results (Proix et al., 2016). This
issue plays a crucial role for the data-driven studies, where
several parcellation schemes (atlases) are currently in use without
a general consensus on their appropriateness (Zalesky et al.,
2010; Eickhoff et al., 2018a). On the other hand, the level of
the parcellation granularity, for example, may strongly impact
the topological properties of brain networks already at the
level of SC (Zalesky et al., 2010). At the level of functional
interrelations between brain nodes, the directionality, weight
and type of connections are important, which can be addressed
by an intrinsically model-based approach of dynamic causal
modeling (DCM) (Friston et al., 2003) providing an estimation
of effective connectivity reflecting causal interactions. Albeit
inferring the effective connectivity in large-scale whole-brain
networks is a challenging problem, recent progress with DCM
(Friston et al., 2014, 2017; Frassle et al., 2017) may support a
prompt development in this field.
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Data analysis of the resting-state fMRI strongly relies on
pre-processing steps, where confound regression is applied to
clean fMRI recordings from contaminating signals (Murphy
et al., 2013; Satterthwaite et al., 2013; Power et al., 2014; Salimi-
Khorshidi et al.,, 2014; Varikuti et al., 2017). The validation
of the brain models also depends on the respective nuisance
signal regression, and previous modeling studies showed that
conclusion derived from the models may depend on the utilized
data processing steps, in particular, on whether the global brain
signal was regressed or not (Cabral et al., 2012b, 2013; Yang et al.,
2014; Anticevic et al., 2015). For different confound regression
and data processing approaches, the impact of those on the
parameters of the validated models can be evaluated. In such
a way the effects of the data pre-processing procedures can be
parametrized, classified and compared to each other as well as to
the results of the data-driven approach (Varikuti et al., 2017).

Dynamical models can be applied to the entire range of the
subject cohorts ranging from personalized models optimized for
a single individual to the models designed to investigate effects
of ensemble averaging, where a few tens of subjects were usually
considered in the latter case (Cabral et al., 2012a; Bettinardi et al.,
2017). The explanatory and predictive power of the large-scale
models may be enhanced if large subject cohorts get involved
in the modeling analysis as it is for the data-driven approach
(Satterthwaite et al., 2013; Finn et al., 2015; Liem et al., 2017).
On the other hand, personalized dynamical brain models can
be an important goal for the model-based approach because of
their application potential for personalized diagnosis, prevention
and treatment of diseases as exemplified by the concept of the
virtual epileptic patient (Jirsa et al., 2017; Proix et al., 2017).
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