000859397 001__ 859397
000859397 005__ 20240711101522.0
000859397 0247_ $$2doi$$a10.3390/app9040728
000859397 0247_ $$2Handle$$a2128/21808
000859397 0247_ $$2WOS$$aWOS:000460696500114
000859397 037__ $$aFZJ-2019-00256
000859397 082__ $$a600
000859397 1001_ $$0P:(DE-HGF)0$$aLiu, Jianlei$$b0$$eCorresponding author
000859397 245__ $$aArchitectural Concept and Evaluation of a Framework for the Efficient Automation of Computational Scientific Workflows: An Energy Systems Analysis Example
000859397 260__ $$aBasel$$bMDPI$$c2019
000859397 3367_ $$2DRIVER$$aarticle
000859397 3367_ $$2DataCite$$aOutput Types/Journal article
000859397 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552317531_629
000859397 3367_ $$2BibTeX$$aARTICLE
000859397 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859397 3367_ $$00$$2EndNote$$aJournal Article
000859397 520__ $$aScientists and engineers involved in the design of complex system solutions use computational workflows for their evaluations. Along with growing system complexity, the complexity of these workflows also increases. Without integration tools, scientists and engineers are often highly concerned with how to integrate software tools and model sets, which hinders their original research or engineering aims. Therefore, a new framework for streamlining the creation and usage of automated computational workflows is introduced in the present article. It uses state-of-the-art technologies for automation (e.g., container-automation) and coordination (e.g., distributed message oriented middleware), and a microservice-based architecture for novel distributed process execution and coordination. It also supports co-simulations as part of larger workflows including additional auxiliary computational tasks, e.g., forecasting or data transformation. Using Apache NiFi, an easy-to-use web interface is provided to create, run and control workflows without the need to be concerned with the underlying computing infrastructure. Initial framework testing via the implementation of a real-world workflow underpins promising performance in the realms of parallelizability, low overheads and reliable coordination
000859397 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000859397 588__ $$aDataset connected to CrossRef
000859397 7001_ $$0P:(DE-HGF)0$$aBraun, Eric$$b1
000859397 7001_ $$0P:(DE-HGF)0$$aDüpmeier, Clemens$$b2
000859397 7001_ $$0P:(DE-Juel1)172651$$aKuckertz, Patrick$$b3$$ufzj
000859397 7001_ $$0P:(DE-Juel1)169156$$aRyberg, Severin David$$b4$$ufzj
000859397 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b5$$ufzj
000859397 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6$$ufzj
000859397 7001_ $$0P:(DE-HGF)0$$aHagenmeyer, Veit$$b7
000859397 773__ $$0PERI:(DE-600)2704225-X$$a10.3390/app9040728$$gVol. 9, no. 4, p. 728 -$$n4$$p728 -$$tApplied Sciences$$v9$$x2076-3417$$y2019
000859397 8564_ $$uhttps://juser.fz-juelich.de/record/859397/files/applsci-09-00728.pdf$$yOpenAccess
000859397 8564_ $$uhttps://juser.fz-juelich.de/record/859397/files/applsci-09-00728.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859397 909CO $$ooai:juser.fz-juelich.de:859397$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000859397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172651$$aForschungszentrum Jülich$$b3$$kFZJ
000859397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169156$$aForschungszentrum Jülich$$b4$$kFZJ
000859397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b5$$kFZJ
000859397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000859397 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b6$$kRWTH
000859397 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000859397 9141_ $$y2019
000859397 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859397 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000859397 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000859397 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL SCI-BASEL : 2017
000859397 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000859397 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000859397 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859397 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859397 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859397 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859397 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000859397 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859397 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859397 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859397 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000859397 9801_ $$aFullTexts
000859397 980__ $$ajournal
000859397 980__ $$aVDB
000859397 980__ $$aUNRESTRICTED
000859397 980__ $$aI:(DE-Juel1)IEK-3-20101013
000859397 981__ $$aI:(DE-Juel1)ICE-2-20101013