001     859397
005     20240711101522.0
024 7 _ |a 10.3390/app9040728
|2 doi
024 7 _ |a 2128/21808
|2 Handle
024 7 _ |a WOS:000460696500114
|2 WOS
037 _ _ |a FZJ-2019-00256
082 _ _ |a 600
100 1 _ |a Liu, Jianlei
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Architectural Concept and Evaluation of a Framework for the Efficient Automation of Computational Scientific Workflows: An Energy Systems Analysis Example
260 _ _ |a Basel
|c 2019
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552317531_629
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Scientists and engineers involved in the design of complex system solutions use computational workflows for their evaluations. Along with growing system complexity, the complexity of these workflows also increases. Without integration tools, scientists and engineers are often highly concerned with how to integrate software tools and model sets, which hinders their original research or engineering aims. Therefore, a new framework for streamlining the creation and usage of automated computational workflows is introduced in the present article. It uses state-of-the-art technologies for automation (e.g., container-automation) and coordination (e.g., distributed message oriented middleware), and a microservice-based architecture for novel distributed process execution and coordination. It also supports co-simulations as part of larger workflows including additional auxiliary computational tasks, e.g., forecasting or data transformation. Using Apache NiFi, an easy-to-use web interface is provided to create, run and control workflows without the need to be concerned with the underlying computing infrastructure. Initial framework testing via the implementation of a real-world workflow underpins promising performance in the realms of parallelizability, low overheads and reliable coordination
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Braun, Eric
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Düpmeier, Clemens
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kuckertz, Patrick
|0 P:(DE-Juel1)172651
|b 3
|u fzj
700 1 _ |a Ryberg, Severin David
|0 P:(DE-Juel1)169156
|b 4
|u fzj
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 5
|u fzj
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 6
|u fzj
700 1 _ |a Hagenmeyer, Veit
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.3390/app9040728
|g Vol. 9, no. 4, p. 728 -
|0 PERI:(DE-600)2704225-X
|n 4
|p 728 -
|t Applied Sciences
|v 9
|y 2019
|x 2076-3417
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859397/files/applsci-09-00728.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859397/files/applsci-09-00728.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859397
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172651
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169156
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SCI-BASEL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21