000859412 001__ 859412
000859412 005__ 20210130000252.0
000859412 0247_ $$2doi$$a10.1021/acs.langmuir.8b03217
000859412 0247_ $$2ISSN$$a0743-7463
000859412 0247_ $$2ISSN$$a1520-5827
000859412 0247_ $$2pmid$$apmid:30421936
000859412 0247_ $$2WOS$$aWOS:000454183500034
000859412 037__ $$aFZJ-2019-00271
000859412 082__ $$a540
000859412 1001_ $$0P:(DE-HGF)0$$aCors, Marian$$b0
000859412 245__ $$aDetermination of Internal Density Profiles of Smart Acrylamide-Based Microgels by Small-Angle Neutron Scattering: A Multishell Reverse Monte Carlo Approach
000859412 260__ $$aWashington, DC$$bACS Publ.$$c2018
000859412 3367_ $$2DRIVER$$aarticle
000859412 3367_ $$2DataCite$$aOutput Types/Journal article
000859412 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547712624_7247
000859412 3367_ $$2BibTeX$$aARTICLE
000859412 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859412 3367_ $$00$$2EndNote$$aJournal Article
000859412 520__ $$aThe internal structure of nanometric microgels in water has been studied as a function of temperature, cross-linker content, and level of deuteration. Small-angle neutron scattering from poly(N-isopropylmethacrylamide) (volume phase transition ≈ 44 °C) microgel particles of radius well below 100 nm in D2O has been measured. The intensities have been analyzed with a combination of polymer chain scattering and form-free radial monomer volume fraction profiles defined over spherical shells, taking polydispersity in size of the particles determined by atomic force microscopy into account. A reverse Monte Carlo optimization using a limited number of parameters was developed to obtain smoothly decaying profiles in agreement with the experimentally scattered intensities. The results are compared to the swelling curve of microgel particles in the temperature range from 15 to 55 °C obtained from photon correlation spectroscopy (PCS). In addition to hydrodynamic radii measured by PCS, our analysis provides direct information about the internal water content and gradients, the strongly varying steepness of the density profile at the particle–water interface, the total spatial extension of the particles, and the visibility of chains. The model has also been applied to a variation of the cross-linker content, N,N′-methylenebisacrylamide, from 5 to 15 mol %, providing insight on the impact of chain architecture and cross-linking on water uptake and on the definition of the polymer–water interface. The model can easily be generalized to arbitrary monomer contents and types, in particular mixtures of hydrogenated and deuterated species, paving the way to detailed studies of monomer distributions inside more complex microgels, in particular core–shell particles.
000859412 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000859412 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000859412 588__ $$aDataset connected to CrossRef
000859412 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000859412 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000859412 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000859412 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000859412 7001_ $$0P:(DE-HGF)0$$aWiehemeier, Lars$$b1
000859412 7001_ $$0P:(DE-HGF)0$$aHertle, Yvonne$$b2
000859412 7001_ $$0P:(DE-Juel1)144382$$aFeoktystov, Artem$$b3$$ufzj
000859412 7001_ $$00000-0001-7523-5160$$aCousin, Fabrice$$b4
000859412 7001_ $$00000-0002-2394-5846$$aHellweg, Thomas$$b5$$eCorresponding author
000859412 7001_ $$00000-0002-9510-1722$$aOberdisse, Julian$$b6$$eCorresponding author
000859412 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.8b03217$$gVol. 34, no. 50, p. 15403 - 15415$$n50$$p15403 - 15415$$tLangmuir$$v34$$x1520-5827$$y2018
000859412 8564_ $$uhttps://juser.fz-juelich.de/record/859412/files/acs.langmuir.8b03217.pdf$$yRestricted
000859412 8564_ $$uhttps://juser.fz-juelich.de/record/859412/files/acs.langmuir.8b03217.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859412 909CO $$ooai:juser.fz-juelich.de:859412$$pVDB$$pVDB:MLZ
000859412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144382$$aForschungszentrum Jülich$$b3$$kFZJ
000859412 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000859412 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000859412 9141_ $$y2018
000859412 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859412 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859412 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859412 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859412 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2017
000859412 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859412 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859412 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859412 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859412 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859412 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859412 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859412 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859412 920__ $$lyes
000859412 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859412 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000859412 980__ $$ajournal
000859412 980__ $$aVDB
000859412 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859412 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859412 980__ $$aUNRESTRICTED