000859419 001__ 859419
000859419 005__ 20210130000252.0
000859419 0247_ $$2doi$$a10.1088/1361-648X/aae9c3
000859419 0247_ $$2ISSN$$a0953-8984
000859419 0247_ $$2ISSN$$a1361-648X
000859419 0247_ $$2pmid$$apmid:30426969
000859419 0247_ $$2WOS$$aWOS:000450250000001
000859419 0247_ $$2altmetric$$aaltmetric:51174090
000859419 037__ $$aFZJ-2019-00278
000859419 082__ $$a530
000859419 1001_ $$00000-0002-1335-1067$$aSchmutzler, Tilo$$b0
000859419 245__ $$aConcentration dependent morphology and composition of n -alcohol modified cetyltrimethylammonium bromide micelles
000859419 260__ $$aBristol$$bIOP Publ.80390$$c2018
000859419 3367_ $$2DRIVER$$aarticle
000859419 3367_ $$2DataCite$$aOutput Types/Journal article
000859419 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547712707_2871
000859419 3367_ $$2BibTeX$$aARTICLE
000859419 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859419 3367_ $$00$$2EndNote$$aJournal Article
000859419 520__ $$aCetyltrimethylammonium bromide (CTAB) is one of the most commonly used surfactants in nanoparticle synthesis and stabilization. Usually, CTAB is used in high concentrations besides co-surfactants leading to well defined products but the complex mesoscopic CTAB structures stay mostly unknown. N-alcohols for instance are widely used co-surfactants which modify the properties of native CTAB dispersions. In this paper we report about a detailed structure analysis of n-alcohol modified CTAB micelles. In particular, n-pentanol and n-hexanol exhibit a significantly different influence on the size, shape and composition of CTAB micelles. Using a combination of small-angle x-ray spectroscopy (SAXS) and neutron scattering spectroscopy (SANS), we applied a method for a complete structural characterization of such micelles. The incorporation of n-pentanol into CTAB micelles generally does not influence the morphology but enhances the number of micelles due to the volume of the added alcohol. N-hexanol, however, leads to an elongation of the micelles as a function of its concentration. It was found by extended contrast variation measurements that this difference is caused by a different distribution of the alcohols between the micellar core and shell. N-pentanol molecules are generally located at the core–shell interface of the CTAB micelles with not only the head group but also two additional methylene bridging groups located in the micellar shell. This leads to an increase of its effective head group volume. In comparison, in n-hexanol modified micelles the whole alkyl chain is located within the micellar core. The detailed structure for n-alcohol modified CTAB micelles is described herein for the first time. The knowledge of the structural details found is indispensable for an in-depth understanding of CTAB–n-alcohol–water interfaces in general which is relevant for the synthesis of many functional nanostructures like mesoporous silica and gold or silver nanoparticles.
000859419 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000859419 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000859419 588__ $$aDataset connected to CrossRef
000859419 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000859419 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000859419 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000859419 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000859419 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x1
000859419 7001_ $$0P:(DE-HGF)0$$aSchindler, Torben$$b1
000859419 7001_ $$0P:(DE-HGF)0$$aGoetz, Klaus$$b2
000859419 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b3$$ufzj
000859419 7001_ $$0P:(DE-HGF)0$$aLindner, Peter$$b4
000859419 7001_ $$0P:(DE-HGF)0$$aPrevost, Sylvain$$b5
000859419 7001_ $$0P:(DE-HGF)0$$aUnruh, Tobias$$b6$$eCorresponding author
000859419 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/aae9c3$$gVol. 30, no. 49, p. 495001 -$$n49$$p495001 -$$tJournal of physics / Condensed matter Condensed matter$$v30$$x1361-648X$$y2018
000859419 8564_ $$uhttps://juser.fz-juelich.de/record/859419/files/Schmutzler_2018_J._Phys.__Condens._Matter_30_495001.pdf$$yRestricted
000859419 8564_ $$uhttps://juser.fz-juelich.de/record/859419/files/Schmutzler_2018_J._Phys.__Condens._Matter_30_495001.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859419 909CO $$ooai:juser.fz-juelich.de:859419$$pVDB$$pVDB:MLZ
000859419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b3$$kFZJ
000859419 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000859419 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000859419 9141_ $$y2018
000859419 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859419 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000859419 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859419 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859419 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2017
000859419 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859419 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859419 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859419 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859419 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859419 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859419 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859419 920__ $$lyes
000859419 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859419 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000859419 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000859419 980__ $$ajournal
000859419 980__ $$aVDB
000859419 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859419 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000859419 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859419 980__ $$aUNRESTRICTED