| Hauptseite > Publikationsdatenbank > Finite-Difference Time-Domain simulations of transmission microscopy enable a better interpretation of 3D nerve fiber architectures in the brain > print |
| 001 | 859427 | ||
| 005 | 20210130000254.0 | ||
| 024 | 7 | _ | |a arXiv:1806.07157 |2 arXiv |
| 024 | 7 | _ | |a 2128/21187 |2 Handle |
| 024 | 7 | _ | |a altmetric:43903373 |2 altmetric |
| 037 | _ | _ | |a FZJ-2019-00285 |
| 100 | 1 | _ | |a Menzel, Miriam |0 P:(DE-Juel1)161196 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Finite-Difference Time-Domain simulations of transmission microscopy enable a better interpretation of 3D nerve fiber architectures in the brain |
| 260 | _ | _ | |c 2018 |
| 336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1568013401_22204 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
| 336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
| 336 | 7 | _ | |a preprint |2 DRIVER |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
| 500 | _ | _ | |a 15 pages, 6 figures (main part); 18 pages, 13 figures, 2 tables (supplementary information) https://arxiv.org/abs/1806.07157 |
| 520 | _ | _ | |a Transmission microscopy measurements of histological brain sections provide usually only 2D (in-plane) information about the spatial nerve fibre architecture. To access the third dimension (out-of-plane orientation) of the nerve fibres, more advanced techniques are required, such as Three-dimensional Polarized Light Imaging (3D-PLI) which uses birefringence measurements to derive the 3D fibre orientations. Here, we show that the polarization-independent transmitted light intensity (transmittance) already contains 3D information: we demonstrate in experimental studies of multiple species (rodent, monkey, human) that the transmittance decreases significantly (by more than 50 %) with increasing out-of-plane angle of the nerve fibres. Using finite-difference time-domain simulations, we demonstrate that this decrease is mainly caused by polarization-independent light scattering in combination with the finite numerical aperture of the imaging system, and that the transmittance does not depend on the crossing angle between in-plane fibres. This allows to use the transmittance e.g. to distinguish between in-plane crossing and out-of-plane nerve fibres in 3D-PLI measurements. |
| 536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
| 536 | _ | _ | |a 571 - Connectivity and Activity (POF3-571) |0 G:(DE-HGF)POF3-571 |c POF3-571 |f POF III |x 1 |
| 536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 2 |
| 536 | _ | _ | |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) |0 G:(DE-Juel1)HGF-SMHB-2013-2017 |c HGF-SMHB-2013-2017 |f SMHB |x 3 |
| 536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 4 |
| 536 | _ | _ | |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) |0 G:(EU-Grant)720270 |c 720270 |f H2020-Adhoc-2014-20 |x 5 |
| 588 | _ | _ | |a Dataset connected to arXivarXiv |
| 700 | 1 | _ | |a Axer, Markus |0 P:(DE-Juel1)131632 |b 1 |u fzj |
| 700 | 1 | _ | |a De Raedt, Hans |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Costantini, Irene |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Silvestri, Ludovico |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Pavone, Francesco S. |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Amunts, Katrin |0 P:(DE-Juel1)131631 |b 6 |u fzj |
| 700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 7 |u fzj |
| 773 | _ | _ | |y 2018 |0 PERI:(DE-600)2465034-1 |
| 856 | 4 | _ | |u https://arxiv.org/abs/1806.07157 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/859427/files/1806.07157.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/859427/files/1806.07157.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:859427 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)161196 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131632 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131631 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)138295 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |2 G:(DE-HGF)POF3-500 |v Connectivity and Activity |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 2 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
| 914 | 1 | _ | |y 2018 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 1 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|