001     859427
005     20210130000254.0
024 7 _ |a arXiv:1806.07157
|2 arXiv
024 7 _ |a 2128/21187
|2 Handle
024 7 _ |a altmetric:43903373
|2 altmetric
037 _ _ |a FZJ-2019-00285
100 1 _ |a Menzel, Miriam
|0 P:(DE-Juel1)161196
|b 0
|e Corresponding author
245 _ _ |a Finite-Difference Time-Domain simulations of transmission microscopy enable a better interpretation of 3D nerve fiber architectures in the brain
260 _ _ |c 2018
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1568013401_22204
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 15 pages, 6 figures (main part); 18 pages, 13 figures, 2 tables (supplementary information) https://arxiv.org/abs/1806.07157
520 _ _ |a Transmission microscopy measurements of histological brain sections provide usually only 2D (in-plane) information about the spatial nerve fibre architecture. To access the third dimension (out-of-plane orientation) of the nerve fibres, more advanced techniques are required, such as Three-dimensional Polarized Light Imaging (3D-PLI) which uses birefringence measurements to derive the 3D fibre orientations. Here, we show that the polarization-independent transmitted light intensity (transmittance) already contains 3D information: we demonstrate in experimental studies of multiple species (rodent, monkey, human) that the transmittance decreases significantly (by more than 50 %) with increasing out-of-plane angle of the nerve fibres. Using finite-difference time-domain simulations, we demonstrate that this decrease is mainly caused by polarization-independent light scattering in combination with the finite numerical aperture of the imaging system, and that the transmittance does not depend on the crossing angle between in-plane fibres. This allows to use the transmittance e.g. to distinguish between in-plane crossing and out-of-plane nerve fibres in 3D-PLI measurements.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 1
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 2
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 3
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 4
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 5
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Axer, Markus
|0 P:(DE-Juel1)131632
|b 1
|u fzj
700 1 _ |a De Raedt, Hans
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Costantini, Irene
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Silvestri, Ludovico
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pavone, Francesco S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 6
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 7
|u fzj
773 _ _ |y 2018
|0 PERI:(DE-600)2465034-1
856 4 _ |u https://arxiv.org/abs/1806.07157
856 4 _ |u https://juser.fz-juelich.de/record/859427/files/1806.07157.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/859427/files/1806.07157.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:859427
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131632
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21