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In many laboratories, conventional bright-field transmission microscopes are available to study the
structure and organization principles of fibrous tissue samples, but they usually provide only 2D
information. To access the third (out-of-plane) dimension, more advanced techniques are employed.
An example is 3D Polarized Light Imaging (3D-PLI), which measures the birefringence of histological
brain sections to derive the spatial nerve fiber orientations. Here, we show how light scattering
in transmission microscopy measurements can be leveraged to gain 3D structural information about
fibrous tissue samples like brain tissue. For this purpose, we developed a simulation framework using
finite-difference time-domain (FDTD) simulations and high performance computing, which can easily
be adapted to other microscopy techniques and tissue types with comparable fibrous structures (e. g.,
muscle fibers, collagen, or artificial fibers). As conventional bright-field transmission microscopy
provides usually only 2D information about tissue structures, a three-dimensional reconstruction of
fibers across several sections is difficult. By combining our simulations with experimental studies,
we show that the polarization-independent transmitted light intensity (transmittance) contains 3D
information: We demonstrate in several experimental studies on brain sections from different species
(rodent, monkey, human) that the transmittance decreases significantly (by more than 50%) with the
increasing out-of-plane angle of the nerve fibers. Our FDTD simulations show that this decrease is
mainly caused by polarization-independent light scattering in combination with the finite numerical
aperture of the imaging system. This allows to use standard transmission microscopy techniques
to obtain 3D information about the fiber inclination and to detect steep fibers, without need for
additional measurements or changes in the experimental setup. Furthermore, we demonstrate that
the transmittance can be used to classify regions with low birefringence signals, like regions with
in-plane crossing fibers and regions with out-of-plane fibers, which can to date not be distinguished
in 3D-PLI measurements. This enables a much better reconstruction of the complex nerve fiber
architecture in the brain.

I. INTRODUCTION

The human brain consists of a huge network of nerve
fibers: Around 100 billion nerve cells are connected to
10,000 other nerve cells on average [1–5]. Understand-
ing the structure and function of the brain remains a
key challenge for neuroscience. To figure out how brain
function emerges from its structural organization, it is
necessary to study the neuronal connections, i. e., the
three-dimensional nerve fiber architecture of the brain.
Developing a detailed network model of the brain, the
so-called connectome [6, 7], reveals connected brain re-
gions and helps to identify important nerve fiber con-
nections, which is a prerequisite for brain surgery. It
also serves as a reference for fiber tractography algo-
rithms, improving the interpretation of clinical data ob-
tained from diffusion magnetic resonance imaging (MRI)
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[8–10]. Finally, the connectivity of the nerve fibers ex-
poses pathological changes in the brain’s tissue struc-
ture, allowing to study neuro-degenerative diseases like
Alzheimer’s or Parkinson’s disease and to develop new
treatments and tools for improved diagnostics. To visu-
alize and derive brain tissue properties and organization
principles, light-microscopy techniques are widely used
[11–13].

In this paper, we study how the scattering of light
can be used to improve the interpretation of light mi-
croscopy images from fibrous tissue samples like brain
tissue. For this purpose, we have developed a simula-
tion framework that models light scattering in transmis-
sion microscopy measurements and allows an improved
interpretation of the measured data by delivering 3D in-
formation about the underlying fiber structure.

Technological progress and new advances in tissue
preparation and labeling have enabled the development
of techniques that reveal the 3D nerve fiber architecture
in both living and post-mortem brains [14], such as Op-
tical Coherence Tomography [15–17], Micro-Optical Sec-
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tioning Tomography [18], Light-Sheet Microscopy [19–
23] or Two-Photon Fluorescence Microscopy (TPFM) [23–
27]. While most of these techniques are limited to small
sample sizes, the neuroimaging technique 3D Polarized
Light Imaging (3D-PLI) [28, 29] allows to study the nerve
fiber architecture of whole post-mortem brains with mi-
croscopic resolution: unstained histological brain sec-
tions are illuminated by polarized light and the bire-
fringence caused by the highly anisotropic structure of
the nerve fibers is measured, thus revealing their spatial
orientations [30].

Such neuroimaging techniques require special in-
struments that are not available in each laboratory.
Many laboratories are equipped with simple transmis-
sion microscopes which only extract 2D information of
the investigated tissue structures, making it difficult
to reconstruct complex nerve fiber architectures across
several brain sections. Here, we show that conven-
tional bright-field transmission microscopy measure-
ments can be used to obtain information about the 3D
fiber structure of a sample, without need to change
the experimental setup or to repeat measurements: the
polarization-independent intensity of light that is trans-
mitted through the sample (transmittance) depends on
the orientation of the fibers with respect to the light
beam, i. e., the transmittance of a brain section provides
information about the out-of-plane inclination angle of
the enclosed nerve fibers. These findings can also be
transferred to other biological and non-biological sam-
ples with comparable fibrous structures, e. g., muscle
fibers, collagen, or artificial fibers.

The correct reconstruction of nerve fiber crossings is
a major challenge for many neuroimaging techniques
and a prerequisite for the correct interpretation of clini-
cal MRI data, allowing for better diagnostics and treat-
ments of neuro-degenerative diseases. In standard 3D-
PLI measurements, brain regions with in-plane crossing
fibers cannot be distinguished from regions with out-of-
plane fibers or regions with low fiber densities because
they all yield small birefringence signals. So far, only
the strength and phase of the birefringence signal are
used to derive the spatial fiber orientations. The trans-
mittance, which is the average value of the signal, has
not been used for this purpose. Here, we demonstrate
that the transmittance cannot only be used to gain infor-
mation about the out-of-plane inclination of the fibers,
but also to classify these regions and to identify crossing
fibers that cannot unambiguously be determined with
standard polarization microscopy techniques.

The transmittance is a measure of how much the light
is attenuated when it passes through the brain tissue,
i. e., it depends on tissue absorption as well as scat-
tering of light. As the absorption coefficient of brain
matter is small (less than 0.1 mm−1 [31, 32]), the mea-
sured transmittance is expected to be mainly influenced
by scattering. To study such complex light-tissue in-
teractions at the microscopic level, we employed finite-
difference time-domain (FDTD) simulations to compute the

propagation of the light wave through the brain tissue
sample [33–37]. FDTD simulations are a proven tool for
studying for example light scattering in lithography ap-
plications [38–40] or nanostructures [41–43]. They have
also been applied to investigate microscopy measure-
ments of non-biological and biological tissue samples
[38, 44, 45], but not yet to brain tissue. One reason
might be that simulations of tissue samples with dimen-
sions of several micrometers are computationally very
intense because the mesh size in the simulation needs
to be much smaller than the wavelength. To still en-
able the investigation of larger samples like brain tissue,
we used high-performance computing and a simplified
simulation model for the optics of the imaging system
and the inner structure of the nerve fibers. The devel-
oped simulation framework can easily be adapted to mi-
croscopy techniques with different optics (wavelength,
polarization of light, numerical aperture, etc.) and tissue
samples with comparable fibrous structures.

The paper is divided in an experimental and a simula-
tion part: In Sec. II, we evaluate experimental data and
develop techniques to obtain structural 3D information
from transmittance images of samples with unknown
substructure: we study measurement results obtained
from brain sections of different species (rodent, mon-
key, human) and show that the transmittance decreases
significantly (by more than 50%) with increasing out-of-
plane inclination angle of the nerve fibers, using both
3D-PLI and TPFM measurements to access the fiber in-
clination. In Sec. III, we introduce the FDTD simulation
framework and present the simulation results for artifi-
cial nerve fiber configurations with different inclination
and crossing angles. The simulations show that the de-
crease in transmittance is mainly caused by isotropic
light scattering and by the finite numerical aperture of
the imaging system. The in-plane crossing angle of the
fibers has no impact on the transmittance and can be
determined from the respective scattering pattern. In
Sec. IV, we combine the simulation results with exper-
imental data and show that the transmittance can be
used to distinguish between regions with in-plane cross-
ing fibers, regions with out-of-plane fibers, and regions
with low fiber density by combining the transmittance
and the strength of the measured birefringence signal.

II. EXPERIMENTAL STUDIES

In this section, various experimental studies are pre-
sented that evaluate how the transmittance of brain sec-
tions depends on the out-of-plane inclination angle of the
enclosed nerve fibers. For our studies, we mostly used
3D-PLI measurements as they provide both the transmit-
tance and the three-dimensional nerve fiber orientations
independently from each other [28, 29]. As both scatter-
ing and absorption contribute to the attenuation (trans-
mittance) of light, differences in the transmittance might
not only be caused by different fiber inclinations, but also
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distributed, the scatter plot shows a clear tendency
towards a decrease in transmittance with increasing
fiber inclination angle. The values in orange belong
to regions with lower fiber densities which might lead
to overestimated transmittance values. However, the
decrease in transmittance is also observed in regions
with maximum fiber density (values in blue): while
the mean transmittance values for flat nerve fibers
(α < 50◦) reach larger values (0.1 < IT,N < 0.2), the mean
transmittance values for steep nerve fibers (α > 60◦) are

small (IT,N < 0.05).

All our experimental studies show that the transmit-
tance of brain tissue decreases significantly (by more
than 50%) with increasing out-of-plane inclination angle
of the enclosed nerve fibers.

III. SIMULATION STUDIES

Although the experimental studies clearly show that
the transmittance depends on the inclination angle of
the nerve fibers, they do not provide enough informa-
tion to describe this effect in detail. Based on the ex-
perimental results alone, it is not possible to make any
predictions or draw conclusions for the interpretation
of measured data. To model and better understand the
observed transmittance effects, we performed numerical
simulations on artificial nerve fiber configurations. This
has the advantage that the exact underlying fiber struc-
ture, and thus the inclination angles of the nerve fibers,
are known – also in bulk tissue with densely packed
fibers.

As mentioned in Sec. I, the absorption coefficient of
brain tissue is small so that the transmittance is ex-
pected to be mainly influenced by scattering. To study
such complex light-matter interactions in microscopic
detail, finite-difference time-domain (FDTD) algorithms
are well suited. They discretize time and space, model
the propagation of the light wave by approximating the
spatial and temporal derivatives in Maxwell’s curl equa-
tions by second-order central differences, and numeri-
cally compute the electromagnetic field components in
space and time [33–37]. As the mesh size of the spatial
discretization needs to be much smaller than the wave-
length (at most 25 nm), simulations of tissue samples
with dimensions of several micrometers are computa-
tionally very intense. We have developed a simulation
framework that allows for the first time to use FDTD
simulations to study larger samples of fibrous tissue.
For this purpose, we used a simplified simulation model
for the brain tissue samples and the optics of the imag-
ing system. We simulated the 3D-PLI measurement for
various fiber configurations and evaluated the resulting
transmittance values.

The artificial fiber configurations consist of about 700
fibers with uniformly distributed diameters between
1.0µm and 1.6µm and different fiber orientations. All

fibers were generated in a volume of 30 × 30 × 30µm3

without intersections. The generation of the fiber con-
figurations is described in Appendix B in more detail.
Each fiber was represented by a simplified nerve fiber
model, consisting of an inner axon with a constant ra-
dius and a surrounding myelin sheath with two layers,
defined by different refractive indices (see Appendix C
for motivation).

For the simulations of the 3D-PLI measurement, we
used a conditionally stable FDTD algorithm to compute
the propagation of the light wave through the tissue
sample (artificial fiber configuration), described in more
detail in Appendix D. The resulting electric field compo-
nents were processed with analytical methods taking all
optical components of the polarimeter into account, in-
cluding the objective lens (with numerical aperture NA
= 0.15) and the camera detector (see Appendix F).

The simulation studies were all performed for nor-
mally incident light with 550 nm wavelength and for the
simulation parameters listed in Appendix E. One sim-
ulation run (volume of 30 × 30 × 30µm3, mesh size of
25 nm) took about 8000 core hours on the supercomputer
JUQUEEN (using an MPI grid of 16 × 16 × 16), allowing
to perform many simulation runs with different param-
eters. The accuracy of the simulation results is discussed
in Appendix G.

A. Simulated transmittance of inclined fibers

To better understand the inclination dependence of
the transmittance that we observed in our experimental
studies, we generated an artificial bundle of densely grown
fibers (see Fig. 5(a) and Appendix B 1) for different in-
clination angles α = {0◦, 10◦, . . . , 90◦}, and computed the
transmittance from a simulated 3D-PLI measurement.

Figure 5(b) shows the resulting scattering patterns
(i. e., the intensity per wave vector angleθk) of light trans-
mitted through the sample for inclination angles α = 0◦

and 70◦. The white circles represent steps of ∆θk = 10◦,
from 0◦ (center) to 90◦ (outer circle). The transmittance
images and scattering patterns for all inclination angles
can be found in Fig. S17 in the Supplemental Material.

For flat fibers (α < 45◦), the light is mostly scattered un-
der angles perpendicular to the principal axis of the fiber
bundle (i. e., along the y-axis). For intermediate inclina-
tion angles, the light is scattered more and more in the
direction of the fibers (i. e., in the positive x-direction).
For an inclination angle of 70◦, the light is broadly scat-
tered in almost all directions (see Fig. 5(b)).

Due to the numerical aperture of the employed imag-
ing system (NA ≈ 0.15), light scattered under angles
larger than arcsin(NA) ≈ 8.6◦ does not contribute to the
measured transmittance images. To study the effect of
the finite numerical aperture on the measured transmit-
tance values, we simulated the imaging system without
aperture (NA = 1) considering light scattered under all
angles, and with aperture (NA = 0.15) considering only
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For all simulated fiber bundles that contain vertical
or steep fibers, the mean transmittance values (densely
dotted lines) are more than 26% less than for the horizon-
tal crossing fibers (solid lines). For interwoven crossing
fibers, the transmittance value is reduced by more than
one half when the horizontal crossing fibers are com-
bined with a vertical fiber bundle (orthogonal bundles).
For the vertical bundle with broad fiber orientation
distribution and the steep bundle of densely grown
fibers (with α = 70◦), the difference between the trans-
mittance values is especially large: the transmittance is
about 80–90% less than for the horizontal crossing fibers.

Our simulations of crossing fiber bundles have shown
that the transmittance for horizontal fibers is mostly
independent of the crossing angle between the bun-
dles and much larger than the transmittance for vertical
fibers. This suggests that the transmittance values can
be used to distinguish between horizontal crossing and
vertical fibers in 3D-PLI measurements, and to detect
vertical fibers within fiber crossings.

IV. COMBINATION OF EXPERIMENTAL AND
SIMULATION STUDIES

In this section, we combine the results from the exper-
imental studies and the simulation studies to develop
a classification for brain regions with low birefringence
signals that cannot be distinguished by 3D-PLI measure-
ment. The simulations in Sec. III B have shown that the
transmittance does not depend on the crossing angle be-
tween in-plane nerve fibers. First, we verify this predic-
tion by investigating the optic chiasm of a hooded seal
[52] – a region that contains fibers with crossing angles
of around 90◦ in the image plane (see Fig. 8).

While the retardation values in the region with cross-
ing fibers (region B in orange) are broadly distributed
(the birefringence signals of crossing fibers cancel out),
the transmittance values in this region show a similar
distribution as in a region with mostly parallel fibers
(region A in blue), see histograms in Fig. 8(d).

The peak transmittance value of region B is slightly
lower than in region A because the number of fibers in
the crossing region (two crossing bundles) is larger than
in the region with parallel fibers (one bundle). Thus, the
transmittance depends on the tissue density, but not on
the crossing angles between the nerve fibers – as pre-
dicted by the simulations in Sec. III B.

To demonstrate that the transmittance can be used
to classify regions with small birefringence signals (i. e.,
small retardation values obtained from 3D-PLI measure-
ments) into regions with in-plane crossing fibers, regions
with steep fibers, and regions with low fiber density,
the predictions obtained from the simulation studies in
Sec. III were applied to experimental data (see Fig. 9).

As the transmittance depends on absorption, the re-
gion with maximum absorption was determined as a

reference: The retardance δ of brain tissue increases
with decreasing fiber inclination angle α and with in-
creasing thickness d of birefringent tissue components
(δ ∝ d∆n cos2 α, where ∆n is the birefringence of the
tissue [28]). Assuming that a brain section contains
all possible nerve fiber configurations, the region with
maximum retardation signal | sin δ|max (orange ellipse in
Fig. 9A) is therefore expected to contain mostly hori-
zontal parallel fibers (α ≈ 0◦) with a high fiber density
(max. d∆n) and thus to cause a maximum of absorption.
Regions with even lower transmittance values are ac-
cordingly expected to contain steep (out-of-plane) fibers
which increase the scattering and thus the attenuation of
light.

By comparing the normalized transmittance values
(IT,N) of regions with small retardation values to the
transmittance of the region with maximum retardation
(Iref ≡ IT,N(| sin δ|max)), the regions can be classified into
three categories (see Fig. 9):

1. IT,N ≪ Iref : regions with notably lower transmit-
tance values are expected to contain steep (out-of-
plane) fibers (see yellow arrows and regions sur-
rounded by a yellow line),

2. IT,N ∼ Iref : regions with similar transmittance val-
ues are expected to contain flat (in-plane) crossing
fibers (see cyan arrows),

3. IT,N ≫ Iref : regions with notably larger transmit-
tance values are expected to have a lower fiber
density (see magenta arrows).

For regions with slightly lower or larger transmittance
values, an unambiguous classification is not possible.
Provided that the region with maximum retardation has
the largest tissue absorption, lower transmittance values
can only be caused by steep fibers. Similar transmittance
values, however, could also be caused by a small num-
ber of steep fibers, and larger transmittance values could
be caused by a small number of in-plane crossing fibers
(or a smaller number of steep fibers). A classification by
means of retardation and transmittance values can there-
fore only serve as an indication of the underlying fiber
configuration and should always be considered in ad-
dition to individual tissue characteristics. As the trans-
mittance depends on the tissue preparation, the com-
bined analysis of transmittance and retardation should
only be performed section-wise. Brain atlases and 3D-
reconstructed images (cf. Fig. 3) validate the classifica-
tion of regions in Fig. 9.

V. DISCUSSION AND CONCLUSION

Conventional bright-field transmission microscopy
measurements of fibrous tissue samples provide usually
only 2D information about the underlying fiber archi-
tecture. This considerably limits the application of these







14

transmittance and retardation images can also be applied
to past 3D-PLI measurements in order to validate and – if
necessary – correct the reconstructed fiber orientations.

Apart from the fiber inclination, the transmitted light
intensity reveals much more information about the un-
derlying tissue structure when studying the exact pat-
tern of the scattered light. Our simulation studies in
Sec. III B have shown that the scattering pattern can be
used, for example, to identify the crossing angle of nerve
fiber bundles, which is not easily accessible with current
measurements. How the scattering pattern is related
to the exact underlying fiber structure and tissue ho-
mogeneity will be addressed in future studies. Major
features of the scattering pattern (like the fiber crossing
angle) can be determined by simply placing an aper-
ture between light source and sample and measuring
the transmitted light intensity for different positions of
the aperture.

The FDTD simulations proved to be a valuable and
reliable tool in many aspects: they allow to better un-
derstand the interaction of polarized light with brain tis-
sue, to find explanations for the observed transmittance
effects, to make general predictions, and to improve the
measurement procedure and analysis. In contrast to pre-
vious top-down simulation approaches of 3D-PLI that
model the optical properties of the nerve fibers by se-
ries of Jones matrices (simPLI [30, 52]), the FDTD sim-
ulations solve Maxwell’s equations and allow to model
more complex effects like the scattering of light, but they
require much more computing time.

Most nerve fibers in the brain are surrounded by a
so-called myelin sheath, which consists of multiple lay-
ers with 3–5 nm thickness (see Appendix C). If the exact
layered structure of the myelin sheath is modeled, the
mesh size in the simulations can be at most 3 nm. In
this case, the simulation of a single nerve fiber with 1µm
diameter consumes almost 290 000 core hours (see Ap-
pendix G 1). To enable the simulation of larger tissue
samples with various simulation parameters, we devel-
oped a simplified nerve fiber model with double myelin
layers and a simplified model for the imaging system
(the incoherent and diffusive light source was modeled
by monochromatic light with normal incidence). We
could show that these simplified models still reproduce
the observed transmittance effects and that our results
are not sensitive to small changes in the simulation pa-
rameters (see Appendix G and [55]), so our model is
a good compromise between accuracy and computing
time. The developed simulation framework can easily
be adapted to microscopy techniques with different op-
tics (numerical aperture, wavelength, polarization, etc.)
and to other species and tissue types. Further brain tis-
sue components like glial cells can easily be added to the
simulation model [56].

In summary, we have developed and successfully ap-
plied a versatile simulation framework for transmission
microscopy measurements of fibrous tissue samples that
allows to study light scattering in larger samples like

brain tissue, using finite-difference time-domain simu-
lations. We have demonstrated both in experimental
and simulation studies on various brain tissue samples
that the polarization-independent transmitted light in-
tensity (transmittance) provides information about the
3D orientation of the enclosed fibers, allowing to use
simple bright-field transmission microscopy to study
three-dimensional fiber structures. Finally, we could
show that the transmittance can be used to classify brain
regions with low birefringence signals without chang-
ing the experimental setup or repeating measurements.
This enables a more enhanced interpretation of three-
dimensional nerve fiber architectures in the brain.
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Appendix A: Measurement methods

1. Preparation of brain sections

The experimental studies in Secs. II and IV were per-
formed on sections from a human brain (male, 87 years
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old), as well as on brain sections from vervet mon-
keys (African green monkey: Chlorocebus aethiops sabaeus,
male, between one and two years old), rats (Wistar, male,
three months old), mice (C57BL/6, male, six months old),
and a hooded seal [52]. All animal procedures were ap-
proved by the institutional animal welfare committee at
Forschungszentrum Jülich GmbH, Germany, and are in
accordance with European Union (National Institutes of
Health) guidelines for the use and care of laboratory ani-
mals. The human brain was acquired in accordance with
the local ethic committee of the University of Rostock,
Germany. A written informed consent of the subject is
available.

The brains were removed from the skull within 24
hours after death, immersed in a buffered solution of 4%
formaldehyde for several weeks, immersed for several
days in solutions of 10% and 20% glycerin combined
with 2% Dimethyl sulfoxide for cryoprotection, dipped
in cooled isopentane for several minutes, and deeply
frozen. The frozen brains were cut with a cryostat mi-
crotome (Leica Microsystems, Germany) at a temperature
of -30 ◦C into sections of 60µm. The brain sections were
mounted on cooled glass slides, embedded in 20% glyc-
erin solution, covered by a cover glass, sealed with lac-
quer, and weighted for several hours to prevent the de-
velopment of air bubbles. The sections were measured
one day after embedding to obtain optimal transmittance
images.

2. 3D-PLI measurement

The 3D-PLI measurements were performed with a
high-resolution Polarizing Microscope (PM) manufac-
tured by Taorad GmbH, Germany. The microscope has
been used in previous 3D-PLI studies to measure the
three-dimensional nerve fiber orientations at high res-
olution [28, 29, 59, 60]. The light source consists of a
single white LED (IntraLED 2020+ operated at 24 W)
with integrated Köhler illumination and a bandpass fil-
ter, generating a wavelength spectrum λ = (550± 5) nm.
Further components are a rotatable linear polarizer, a
specimen stage, a circular analyzer (quarter-wave re-
tarder combined with linear polarizer), and a CCD cam-
era (monochrome RETIGA-4000R camera by QImaging
with Kodak KAI-04022-ABA image sensor) which records
an image for each rotation angle ρ = {0◦, 10◦, . . . , 170◦}
of the polarizer, yielding a series of 18 images. The mi-
croscope is equipped with a motorized specimen stage
(Märzhäuser, Germany) which performs a translational
scan of the brain section in tiles of 2.7 × 2.7 mm2. To al-
low for stitching, the tiles were measured with an over-
lap of 30% on all sides. The objective lens (Nikon TL Plan
Fluor EPI P 5x) has a 5× magnification and a numerical
aperture of 0.15. The resolution in object space is about
1.33µm /px.

The transmittance and retardation images in Secs. II
and IV were computed as described in Axer et al.
[28, 29] by performing a discrete harmonic Fourier anal-

ysis on the measured light intensities I(ρ) per image
pixel: I(ρ) = a0 + a2 cos(2ρ) + b2 sin(2ρ). The transmit-
tance IT corresponds to the average over all 18 images
and was computed from the Fourier coefficient of or-
der zero (IT = 2 a0), the retardation | sin δ| corresponds
to the amplitude of the intensity signal and was com-
puted from the Fourier coefficients of order zero and

two
(

| sin δ| = (a2
2
+ b2

2
)1/2/a0

)

, where δ is the phase shift

induced by the birefringent brain tissue. The trans-
mittance images were normalized by the transmittance
image measured without sample, yielding normalized
transmittance images (IT,N).

Images of several consecutive brain sections (see
Fig. 3) were registered onto each other using in-house
developed software tools based on the software pack-
ages ITK, elastix, and ANTs [61–65] which perform linear
and non-linear transformations. As undistorted refer-
ence volume, aligned blockface images were used: a
picture of the brain block surface (blockface image) was
taken every time before sectioning, a pattern of ARTag
markers [66] was used to determine the position of the
brain block in two-dimensional space [67].

3. TPFM measurement

The TPFM measurements were performed with a
custom-made two-photon fluorescence microscope [23,
68] at the European Laboratory for Non-Linear Spectroscopy
(LENS), University of Florence, Italy. The microscope
is equipped with a mode-locked titanium-sapphire laser
with a wavelength of 800 nm which is coupled into a
scanning system based on a pair of galvanometric mir-
rors. The laser is focused onto the sample by a water-
immersion 25× objective lens (LD LCI Plan-Apochromat
25x/0.8 Imm Corr DIC M27). The lateral displacement of
the sample was realized by a motorized xy-stage (en-
abling tile-wise scanning of the sample). The axial dis-
placement (along the z-axis) was realized by a closed-
loop piezoelectric stage. The fluorescence signals were
collected by two photomultiplier tubes, enabling to de-
tect red and green fluorescence. The setup achieves a
resolution of 0.244×0.244×1µm3. The sample was mea-
sured in tiles of 250×250µm2, with an overlap of 10% to
allow for stitching.

4. Bright-field transmission microscopy

The bright-field transmission microscopy images were
obtained from ZEISS Axio Imager Vario. The microscope
is equipped with a white microLED which emits un-
polarized light with wavelengths between 400 nm and
750 nm. The objective lens (Plan Apochromat 5x) has a
5× magnification and a numerical aperture of 0.16. The
resolution in object space is about 0.91µm /px.
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Appendix B: Generation of artificial fiber configurations

1. Densely grown fiber bundle

The bundle of densely grown fibers (see Fig. 5(a))
was generated by in-house developed software: N =

700 circles with uniformly distributed diameters (d ∈
[1.0, 1.6]µm) were randomly uniformly placed in the
xy-plane (in an area of 45 × 30µm2). The circles were
initialized with a random speed (max. 0.1µm displace-
ment per step) and collided with each other (assuming
elastic collision with particle mass r2) until a solution
was reached without collision in the xy-plane. To obtain
well-distributed fibers, the previous step was repeated
250 times before the positions of the circles were stored.
To obtain a 3D fiber volume, the circle positions were
stored while incrementing the z-position by 1µm per
step. To generate fiber bundles with different inclination
angles, the resulting bundle of densely grown fibers was
rotated around the y-axis with respect to the center po-
sition and cropped to a volume of 30 × 30 × 30µm3. To
prevent fibers from touching each other after discretiza-
tion, all fiber diameters were reduced by 5%. In the
resulting fiber bundle, about 60% of the volume is filled
with fibers.

2. Inhomogeneous fiber bundles

Inhomogeneous fiber bundles, like the bundle with
broad fiber orientation distribution (Fig. 5(c)(ii)) or cross-
ing fibers (Fig. 7(a),(b)), were generated by in-house de-
veloped software [69] which allows collision control in
3D. Starting from well-distributed straight fibers with
N = 700 and d ∈ [1.0, 1.6]µm (obtained after 250 steps
as described in the previous section), the fibers were di-
vided iteratively into segments of 2–5µm and assigned
a random displacement in the x-, y-, and z-direction.
The resulting fiber segments were split or merged until
the length of each segment was again between 2–5µm,
ensuring that the maximum angle between adjacent seg-
ments was less than 20◦. When a collision between two
segments was detected, the segments were exposed to a
small repelling force and the previous step was repeated
until no more collisions were detected. To prevent fibers
from touching each other, all fiber diameters were re-
duced by 5%. The resulting fiber bundle was cropped
to a volume of 30 × 30 × 30µm3. The fiber bundles were
generated from different configurations of straight fibers
and different random displacements:

• Bundle with broad fiber orientation distribution
(Fig. 5(c)(ii)): The fiber bundle was generated from
a bundle of straight horizontal fibers in the x-
direction and a maximum random displacement of
10µm. In the resulting fiber bundle, about 33% of
the volume is filled with fibers. To generate fiber
bundles with different inclination angles, the re-

sulting bundle was rotated around the y-axis with
respect to the center position.

• Separate crossing fiber bundles (Fig. 7(a)): The bun-
dle of straight horizontal fibers in the x-direction
was divided in an upper and a lower bundle of
thickness z/2, respectively. The upper bundle was
rotated around the z-axis about the center position
by an angle +χ/2, the lower bundle was rotated by
an angle −χ/2, resulting in two separate bundles
with crossing angle χ (cf. Fig. 10a). The resulting
fibers were used as input for the algorithm with
a maximum displacement of 1µm. Depending on
the crossing angle of the resulting fiber bundle, be-
tween 40–50% of the volume is filled with fibers.

• Interwoven crossing fiber bundles (Fig. 7(a)): Each
fiber layer in the z-direction of the straight horizon-
tal fiber bundle (oriented in the x-direction) was
rotated alternately by ±χ/2 (cf. Fig. 10(b)). The re-
sulting fibers were used as input for the algorithm
with a maximum displacement of 1µm. Depend-
ing on the crossing angle of the resulting fiber bun-
dles, between 40–50% of the volume is filled with
fibers.

• Mutually orthogonal, interwoven fiber bundles
(Fig. 7(b)): The straight horizontal fiber bundle
(oriented in the x-direction) was divided in three
types of alternating layers: one layer was rotated
+ 45◦ around the z-axis, one − 45◦ around the z-
axis, and one +90◦ around the y-axis, yielding two
horizontal fiber bundles in the xy-plane and one
vertical fiber bundle oriented along the z-axis. The
resulting fibers were used as input for the algo-
rithm with a maximum displacement of 1µm. In
the resulting fiber bundle (cf. Fig. 10(c)), ca. 32% of
the volume is filled with fibers.

Appendix C: Model of the nerve fibers

The myelin sheath surrounds most of the axons in
the white brain matter and consists of densely packed
cell membranes [70, 71]. Figure 11(c) shows the layered
structure of the myelin sheath: it consists of alternating
layers of cell membranes (lipid bilayers of about 5 nm
thickness) and intracellular/cytoplasmic or extracellular
space (of about 3 nm thickness) [72, 73]. As the extra-
cellular membranes are not fused and swell in water
[70, 72], it is assumed that the extracellular space is filled
with the glycerin solution used for embedding the brain
sections (cf. Appendix A 1).

The refractive indices n of the layers were estimated
from literature values of lipids/membranes (n = 1.47
[74], neglecting any proteins), cytoplasm (n = 1.35 [75]),
and glycerin solution (n = 1.37, measured with digital
refractometer).
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TABLE II. Parameters for the simulation studies in Sec. III:
expenses of one simulation run (computation of one fiber con-
figuration, one wavelength, and one angle of incidence on
JUQUEEN), dimensions of the simulation volume, and fiber
properties (radius r, thickness t, refractive index n).

General Simulation Parameters

Yee mesh size: ∆ = 25 nm
Courant factor: C = 0.8
# periods: 200
MPI grid: 16 × 16 × 16

core hours: ∼ 7000–8000
wall time: ∼ 1:45–2:00 h
min. memory required: ∼ 260–360 GB

Simulation Box

volume: x × y × z = 30 × 30 × 35 µm3

boundaries: UPML (1µm thick)

Surrounding Medium

dimensions: x × y × z = 30 × 30 × 31 µm3

refractive index: nsurr = 1.37

Fiber Configuration

volume: x × y × z = 30 × 30 × 30 µm3

fiber radius: r ∼ 0.5µm

axon: rax = 0.65 r, nax = 1.35

myelin sheath: tsheath = 0.35 r = tm + tg + tm

double myelin layers: tm =
3
7 tsheath, nm = 1.47

single glycerin layer: tg =
1
7 tsheath, ng = 1.37

one angle of incidence) consumed between 7000–8000
core hours, required a minimum memory between 260–
360 GB, and lasted between 1:45–2:00 hours.

Appendix F: Computation of the transmitted light
intensities

Figure 12 shows how the 3D-PLI measurement was
modeled by means of FDTD simulations. For the simu-
lations, a mathematically equivalent polarimetric setup
of the employed microscope was considered in which
the sample is illuminated by (left-handed) circularly po-
larized light and analyzed by a rotating linear polarizer
(analyzer).

The computation of the transmitted light intensities
consists of several steps:

1.) Maxwell Solver: After passing the polarizing fil-
ters in front of the sample (see Fig. 12 on the left), the
light wave is left-handed circularly polarized. The prop-
agation of the light wave through the sample was com-

puted by TDME3D as described in Appendix D. The
resulting light wave is represented by a superposition of
monochromatic plane waves with different wave vectors
k and real amplitudes E0,k:

Ek(r, t) = E0,k cos(k · r − ωt + φ) (F1)

≡ Ak cos(k · r − ωt) − Bk sin(k · r − ωt), (F2)

where r and t are the spatial and temporal coordinates,
ω is the angular frequency, φ is the phase, and Ak and Bk

are defined as: Ak = E0,k cosφ and Bk = E0,k sinφ.
Note that every index k denotes a different wave vector

k and is not related to the wave number k = 2π/λ (the
wavelength of the transmitted light waves is the same as
for the ingoing light wave).

2.) Yee shift: Before further processing, the electromag-
netic field components were shifted in the x,y,z-direction
to the middle of the corresponding Yee cell, respectively:

Ek,x(r, t) : y 7→ y + ∆y/2, z 7→ z + ∆z/2, (F3)

Ek,y(r, t) : x 7→ x + ∆x/2, z 7→ z + ∆z/2, (F4)

Ek,z(r, t) : x 7→ x + ∆x/2, y 7→ y + ∆y/2, (F5)

where ∆x = ∆y = ∆z is the side length of the cubic Yee
cell.

For each shift ∆ j in the direction j = {x, y, z}, the vector
components Ak,i and Bk,i were recomputed as follows:

Ǎk,i = Ak,i cos(k j ∆ j) − Bk,i sin(k j ∆ j), (F6)

B̌k,i = Ak,i sin(k j ∆ j) + Bk,i cos(k j ∆ j). (F7)

After performing the shifts specified in Eq. (F3) to (F5),
the resulting field vector is given by:

E′k(r, t) = A′k cos(k · r − ωt) − B′k sin(k · r − ωt). (F8)

3.) Scattering pattern: To study how much light is scat-
tered under a certain angle (wave vector k), the scattering
pattern was computed, i. e., the intensity per wave vector
normalized by the ingoing light intensity (I0) per image
pixel (px):

Ik ≡
|E′

0,k
|2

I0/(# px)
=
|A′

k
|2 + |B′

k
|2

I0/(# px)
. (F9)

4.) Rotating analyzer: To model the 3D-PLI mea-
surement, the electric field vector E′

k
(r, t) was processed

through the second linear polarizer (analyzer) rotated by
angles ρ, yielding:

Ẽk(r, t, ρ) = Ãk(ρ) cos(k · r − ωt) − B̃k(ρ) sin(k · r − ωt).
(F10)

The x- and y-components of Ẽk(r, t, ρ) were computed
by multiplying E′

k
(r, t) with the Jones matrix of a rotated

linear polarizer [80, 81]:
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(F11)
= −

kx sinρ − ky cosρ

kz

×
(

E′k,x(r, t) sinρ − E′k,y(r, t) cosρ
)

. (F12)

5.) Objective lens: The objective lens was assumed to
be ideal and both specimen and detector were assumed
to lie within the corresponding focal planes of the lens.
Thus, the propagation of the electromagnetic wave be-
tween sample and detector was assumed to be free and
Ẽk(r, t, ρ) was evaluated at the z-position of the detection
plane behind the sample (defined as z = 0):

r = (rx, ry, 0)T. (F13)

To account for the numerical aperture (NA) of the ob-
jective lens, only k-vectors were processed that fulfill:

θk = arccos





kz
√

k2
x + k2

y + k2
z





≤ arcsin(NA). (F14)

The employed imaging system has a numerical aperture
of about 0.15, so only k-vectors with angles θk ≤ 8.6◦

were used for processing.

6.) Detector microlenses: The camera sensor contains
an array of spherical microlenses which bundle the light
onto subjacent photodiodes for each image pixel. As-
suming perfect microlenses and photodiodes that are
completely covered by one microlens, respectively, the
microlenses were modeled by applying a moving aver-
age over the area of the microlens. Instead of taking the
magnification and the physical size of the microlenses
into account, the microlenses were modeled with a di-
ameter of 2 r0 = 1.33µm corresponding to the pixel size
of the microscope in object space:

Ĕk(r, t, ρ) = Ẽk(r, t, ρ) ∗ circ(r) ,

circ(r) =





1

π r2
0

, r < r0

0 , r ≥ r0.

(F15)

To obtain the full image information (independent of
the detector pixel position), no rasterizing was applied.

7.) Intensity: In principle, the intensity detected by the
camera sensor depends on the angle of incidence of the
incident light: I cosθk. As the numerical aperture is suf-
ficiently small (NA = sinθk ≈ 0.15 ⇔ cosθk > 0.9886),
the angle dependence was neglected, which enables to
represent the intensity I(r, ρ) as Fourier series in ρ, as
described below.

With this assumption, the light intensity recorded by
the camera is given by the absolute squared value of the

electric field vector. To compute the intensity at a certain
point r in the image plane, the electric field vectors were
summed over k and averaged over time:

I(r, ρ) ∝ |E(r, ρ)|2 ≡
1

T

T∫

0

∣
∣
∣
∣

∑

k

Ĕk(r, t, ρ)
∣
∣
∣
∣

2

dt

∝

∣
∣
∣
∣FT−1

{

Ãk(ρ) + i B̃k(ρ)
}

∗ circ(r)
∣
∣
∣
∣

2

, (F16)

where FT−1 denotes the inverse discrete Fourier transform:

FT−1{ f } =
∑

k

fk ei k·r . (F17)

The discrete Fourier transform (FT) is defined analogously.

To save computing time, the convolution in Eq. (F16)
was replaced by a multiplication, making use of the con-
volution theorem:

I(r, ρ) ∝
∣
∣
∣
∣FT−1

{ (

Ãk(ρ) + i B̃k(ρ)
)

FT{circ(r)}
}∣∣
∣
∣

2

(F18)

=

∣
∣
∣
∣
∣
∣
FT−1

{
(

Ãk(ρ) + i B̃k(ρ)
)

2
J1(r0 kxy)

r0 kxy

}∣
∣
∣
∣
∣
∣

2

, (F19)

where the function J1(x) is the Bessel function of the first

kind of order one, with kxy ≡

√

k2
x + k2

y and r0 = 0.665µm.

To simplify notation, the following abbreviations are
defined:

Ẽk(ρ) ≡
(

Ãk(ρ) + i B̃k(ρ)
)

2
J1(r0 kxy)

r0 kxy
, (F20)

E′k ≡
(

A′k + i B′k

)

2
J1(r0 kxy)

r0 kxy
, (F21)

Ẽ(r, ρ) ≡ FT−1
{

Ẽk(ρ)
}

, (F22)

E′(r) ≡ FT−1
{

E′k

}

. (F23)

The intensity is then given by:

I(r, ρ) ∝ |Ẽx(r, ρ)|2 + |Ẽy(r, ρ)|2 + |Ẽz(r, ρ)|2. (F24)

The x- and y-components of the electric field vector
Ẽk(r, t, ρ) behind the rotating analyzer were computed
from E′

k
(r, t) = A′

k
cos(k · r − ωt) − B′

k
sin(k · r − ωt) ac-

cording to Eq. (F11). As the equation is linear in the x-
and y-components of E′

k
(r, t), the x- and y-components

of {A′
k
, B′

k
, E′k} are transformed to {Ãk(ρ), B̃k(ρ), Ẽk(ρ)} ac-

cording to the same equation. As the Fourier transform
is independent from ρ, Eq. (F11) also holds for the x-
and y-components of E′(r) and Ẽ(r, ρ), yielding Fourier
coefficients of order zero and two:
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|Ẽx(r, ρ)|2 + |Ẽy(r, ρ)|2

(F11)
= sin2 ρ |E ′x(r)|2 + cos2 ρ |E ′y(r)|2 − sinρ cosρ

(

E
′
x(r) E ′∗y (r) + E

′∗
x (r) E ′y(r)

)

=
1

2

(

|E ′x(r)|2 + |E ′y(r)|2
)

︸                  ︷︷                  ︸

co

+
1

2

(

|E ′y(r)|2 − |E ′x(r)|2
)

︸                  ︷︷                  ︸

c2

cos(2ρ)−
1

2

(

E
′
x(r) E ′∗y (r) + E

′∗
x (r) E ′y(r)

)

︸                               ︷︷                               ︸

d2

sin(2ρ) (F25)

≡ c0(r) + c2(r) cos(2ρ) + d2(r) sin(2ρ) , (F26)

where trigonometric identities have been used:
(

cos2 x =
1
2 +

1
2 cos(2x), sin x cos x = 1

2 sin(2x)
)

.

Similar analytical calculations yield Fourier coeffi-
cients of orders zero, two, and four:

|Ẽz(r, ρ)|2 = e0(r) + e2(r) cos(2ρ) + f2(r) sin(2ρ)

+ e4(r) cos(4ρ) + f4(r) sin(4ρ) , (F27)

where em(r) and fm(r) are functions of the inverse discrete
Fourier transforms:

Xx(r) ≡ FT−1

{

kx

kz
E
′
k,x

}

, Xy(r) ≡ FT−1

{
ky

kz
E
′
k,x

}

, (F28)

Yx(r) ≡ FT−1

{

kx

kz
E
′
k,y

}

, Yy(r) ≡ FT−1

{
ky

kz
E
′
k,y

}

. (F29)

Thus, the transmitted light intensity I(r, ρ) can be writ-
ten in terms of a Fourier series:

I(r, ρ) ∝ |Ẽx(r, ρ)|2 + |Ẽy(r, ρ)|2 + |Ẽz(r, ρ)|2

= a0(r) + a2(r) cos(2ρ) + b2(r) sin(2ρ)

+ a4(r) cos(4ρ) + b4(r) sin(4ρ), (F30)

a0(r) ≡ c0(r) + e0(r), a2(r) ≡ c2(r) + e2(r),

b2(r) ≡ d2(r) + f2(r), a4(r) ≡ e4(r), b4(r) ≡ f4(r) ,
(F31)

where the Fourier coefficients am(r) and bm(r) are com-
puted from the six inverse discrete Fourier transforms
defined above: E ′x(r), E ′y(r), Xx(r), Xy(r), Yx(r), Yy(r).

For non-normally incident light (kx , 0 or ky , 0), the
transmitted light intensity contains Fourier coefficients
of order four (cf. Eq. (F27)).

Using Eq. (F30), the light intensity was computed for
arbitrary rotation angles ρ and normalized by the ingo-
ing light intensity per image pixel:

IN(r, ρ) =
I(r, ρ)

I0/(# px)
. (F32)

In the experiment, the measured light intensities are
normalized by the light intensities measured without
specimen to compensate for filter inhomogeneities. This

image calibration could be modeled by performing an
additional simulation run without sample. To save com-
puting time, the simulated light intensities were simply
normalized by I0 (without considering the imaging sys-
tem) and only relative values were used for the compar-
ison between measured and simulated light intensities.

The Fourier coefficient of order zero a0,N(r) obtained
from the simulated normalized transmitted light inten-
sity IN(r, ρ) was used to compute the simulated transmit-
tance images IT,N(r):

IT,N(r) ≡ a0,N(r). (F33)

Figure S19 in the Supplemental Material summarizes
the most important steps of computing the transmitted
light intensities for 3D-PLI simulations. The compu-
tation was carried out in Python (version 2.7.6) using
the NumPy package (version 1.12.1) [82, 83]. To obtain
the intensity at a certain pixel position (x,y), the inverse
discrete Fourier transform was computed in two dimen-
sions by means of the Fast Fourier Transform [84]. To
enable an efficient use of the FFT, the number of grid
points in x and y (Nx and Ny) were set to be a multiple
of two:

N′x = 2mx > Nx, (F34)

N′y = 2my > Ny. (F35)

Appendix G: Error estimation of simulation results

When modeling the optical components of the imag-
ing system, the limitations of the simulation software
need to be taken into account: the simulated light wave
is completely polarized and coherent, the materials are
characterized by isotropic refractive indices, and size
and resolution of the simulated geometries are limited
due to finite computing time.

Using completely polarized light for the simulations
implies that the optical elements are assumed to be
ideal (unpolarized light source, ideal polarizing filters,
no polarization-sensitivity of the camera). For the em-
ployed polarizing microscope, these assumptions are
reasonable because the optical components are of high
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quality. Moreover, the transmittance can be considered
to be mostly independent from the polarization proper-
ties of the imaging system.

The simulation studies in Sec. III were performed for a
reduced sample size (30 × 30 × 30µm3) and 200 periods.
Simulations with larger sample sizes in x/y and more
periods yielded similar results [85].

To further reduce computing time, the simulation
studies were performed for a simplified nerve fiber
model (axon surrounded by double myelin layers, cf.
Fig. 11(e)), a Yee mesh size of 25 nm, and normally inci-
dent light with 550 nm wavelength. To estimate the accu-
racy of the simulation results, the transmittance images
were simulated for different numbers of myelin layers L,
different Yee mesh sizes ∆, different wavelengths λ, and
different angles of incidence θ. To study the influence of
one simulation parameter at once, only one simulation
parameter was varied while all other simulation param-
eters were chosen as in Tab. II (with normally incident
light and 550 nm wavelength).

To estimate the accuracy of the resulting transmittance
images, the absolute relative difference between the mean
values (ARDM) and the relative mean absolute difference
(RMAD) between the images were computed:

ARDM ≡

∣
∣
∣
∣
∣

〈image〉 − 〈ref.image〉

〈ref.image〉

∣
∣
∣
∣
∣
, (G1)

RMAD ≡
〈|image − ref.image|〉

|〈ref.image〉|
. (G2)

In this notation, the “image” refers to the transmittance
image for which the absolute relative difference is com-
puted (obtained, e. g., from simulations with different
Yee mesh sizes). The “reference image” is the transmit-
tance image used for comparison (obtained, e. g., from
the simulation with minimum mesh size). The symbol
〈〉 represents the average over all image pixels. As the
simulation studies mostly investigate the mean trans-
mittance values, the ARDM is a direct measure for the
accuracy of the simulation results, while the RMAD is
a measure for the reliability of the ARDM as an error
estimate.

1. Different numbers of myelin layers

To estimate the accuracy of the simplified nerve fiber
model, a straight single fiber with reduced simulation
volume (see Fig. 13(a)) was simulated for different num-
bers L of myelin layers with thickness tm (and L−1 sepa-
rating glycerin layers with thickness tg = tm/3) as well as
for a realistic model of the myelin sheath consisting of 43
thin layers (see Fig. 13(b)). The Yee mesh size was chosen
to be small enough to resolve all geometric features: For
most samples, the mesh size was chosen to be one third
of the glycerin layer thickness (∆ = tg/3). Fibers with
two myelin layers (L = 2) were also simulated for larger

mesh sizes (∆ = tg/2 = 12.5 nm and∆ = tg = 25 nm). The
realistic myelin sheath was simulated for ∆ = tg = 3 nm,
consuming 288 358 core hours on JUQUEEN (using an
MPI grid of 64 × 64 × 16).

Figure 13(c) shows the corresponding transmittance
images, mean values, and line profiles obtained from
3D-PLI simulations with normally incident light and
λ = 550 nm for the straight single fibers shown in
Fig. 13(b). The mean values and line profiles for L ≥ 1
look similar. For better comparison, Fig. 13(d) shows
the absolute relative differences (ARDM and RMAD) be-
tween the transmittance images with L = {0, 1, 2, 3, 4, 5}
and the transmittance image with realistic myelin sheath.
The relative differences decrease with increasing num-
ber of myelin layers L and with decreasing mesh size ∆.
A fiber with two or more myelin layers and a mesh size
∆ = tg/3 yields similar transmittance values as the fiber
with realistic myelin sheath. With increasing mesh size,
the relative differences increase. For a fiber with dou-
ble myelin layers and a mesh size ∆ = 12.5 nm (25 nm),
the differences are: ARDM ≈ 1.2% (2.3%) and RMAD
≈ 1.6% (2.8%). For a mesh size of 25 nm, the differ-
ences are still smaller than for a fiber without or with
a single myelin layer. Thus, a fiber with double myelin
layers and a mesh size of 25 nm is a good compromise
between accuracy and computing time and was used
for all simulation studies in Sec. III. In interesting cases,
the simulations were repeated for a reduced mesh size
(∆ = 12.5 nm), see black crosses in Fig. 14(b).

2. Different wavelengths, angles of incidence,
and Yee mesh sizes

The light source of the employed Polarizing Micro-
scope emits light with slightly different wavelengths
(λ = (550 ± 5) nm) and different angles of incidence (the
sample is illuminated under angles θ < 3◦) [85]. To
model this incoherent and diffusive light source, several
simulation runs with different wavelengths λ and an-
gles of incidence (ϕ, θ) were performed, and the result-
ing intensities were added incoherently. A comparison
of simulated and experimental data for a well-defined
sample (USAF-1951 resolution target) revealed that the
light source can sufficiently be modeled by three differ-
ent wavelengths (λ = {545, 550, 555}nm) weighted ac-
cording to the wavelength spectrum, and five angles of
incidence (θ = 0◦; θ = 3◦, ϕ = {0◦, 90◦, 180◦, 270◦}) [85].

The simulation studies in Sec. III were only performed
for normally incident light and a single wavelength (λ =
550 nm). To estimate the accuracy of the simulation re-
sults, especially for the transmittance curves in Fig. 5(c),
the 3D-PLI simulations for the bundle of densely grown
fibers with inclination angles α = {0◦, 10◦, . . . , 90◦} were
performed for the three different wavelengths and five
angles of incidence defined above. The resulting trans-
mittance curves for NA = 0.15 (solid curves) and NA = 1
(dashed curves) are shown in Fig. 14(b). The simulations







26

[17] J. Ben Arous, J. Binding, J. F. Léger, M. Casado, P. Topilko,
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H. Axer, U. Pietrzyk, and K. Zilles, A novel approach to
the human connectome: Ultra-high resolution mapping
of fiber tracts in the brain, NeuroImage 54, 1091 (2011).
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and M. Axer, Diattenuation of brain tissue and its impact
on 3D polarized light imaging, Biomed. Opt. Express 8,
3163 (2017).

[54] M. Menzel, M. Axer, K. Amunts, H. D. Raedt,
and K. Michielsen, Diattenuation Imaging reveals dif-
ferent brain tissue properties, Scientific Reports 9,
10.1038/s41598-019-38506-w (2019).

[55] M. Menzel, Simulation and Modeling for the Reconstruction
of Nerve Fibers in the Brain by 3D Polarized Light Imaging,
Master’s thesis, RWTH Aachen University (2014).

[56] K. Ginsburger, F. Matuschke, F. Poupon, J.-F. Mangin,
M. Axer, and C. Poupon, MEDUSA: A GPU-based tool
to create realistic phantoms of the brain microstructure
using tiny spheres, NeuroImage 193, 10 (2019).
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FIG. 19. Supplementary Figure | Flow chart visualizing the computation of the transmitted light intensities (see Appendix F).
The electromagnetic field components behind the sample (represented by a set of vectors {Ak, Bk, k}, green box) were computed
by TDME3D and shifted to the middle of the corresponding Yee cell (with side length ∆). To study how much light is scattered
under a certain angle (wave vector k), the scattering pattern Ik was computed, i. e., the intensity per wave vector normalized by
the ingoing light intensity I0 per image pixel (orange box). The spherical microlenses of the camera detector were modeled by
applying a moving average over the area of the microlens with radius 0.665µm (J1 is the Bessel function of the first kind of order
one). The numerical aperture of the imaging system was modeled by considering only waves with directions of propagation k
that fulfill θk < arcsin(NA) ≈ 8.63◦. Applying a 2D inverse discrete Fast Fourier Transform (FFT), the transmitted light intensities
were computed and normalized by the ingoing light intensity per pixel (red box).


