000859428 001__ 859428
000859428 005__ 20210130000254.0
000859428 0247_ $$2arXiv$$aarXiv:1806.07712
000859428 0247_ $$2Handle$$a2128/21190
000859428 0247_ $$2altmetric$$aaltmetric:43939043
000859428 037__ $$aFZJ-2019-00286
000859428 082__ $$a910
000859428 1001_ $$0P:(DE-Juel1)161196$$aMenzel, Miriam$$b0$$eCorresponding author$$ufzj
000859428 245__ $$aDiattenuation Imaging reveals different brain tissue properties
000859428 260__ $$c2018
000859428 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1553172073_30752
000859428 3367_ $$2ORCID$$aWORKING_PAPER
000859428 3367_ $$028$$2EndNote$$aElectronic Article
000859428 3367_ $$2DRIVER$$apreprint
000859428 3367_ $$2BibTeX$$aARTICLE
000859428 3367_ $$2DataCite$$aOutput Types/Working Paper
000859428 500__ $$a18 pages, 9 figures arXiv:1806.07712v4
000859428 520__ $$aWhen transmitting polarised light through histological brain sections, different types of diattenuation (polarisation-dependent attenuation of light) can be observed: In some brain regions, the light is minimally attenuated when it is polarised parallel to the nerve fibres (referred to as D+), in others, it is maximally attenuated (referred to as D-). The underlying mechanisms of these effects and their relationship to tissue properties were so far unknown. Here, we demonstrate in experimental studies that diattenuation of both types D+ and D- can be observed in brain tissue samples from different species (rodent, monkey, and human) and that the strength and type of diattenuation depend on the nerve fibre orientations. By combining finite-difference time-domain simulations and analytical modelling, we explain the observed diattenuation effects and show that they are caused both by anisotropic absorption (dichroism) and by anisotropic light scattering. Our studies demonstrate that the diattenuation signal depends not only on the nerve fibre orientations but also on other brain tissue properties like tissue homogeneity, fibre size, and myelin sheath thickness. This allows to use the diattenuation signal to distinguish between brain regions with different tissue properties and establishes Diattenuation Imaging as a valuable imaging technique.
000859428 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000859428 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000859428 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x2
000859428 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x3
000859428 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x4
000859428 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x5
000859428 588__ $$aDataset connected to arXivarXiv
000859428 7001_ $$0P:(DE-Juel1)131632$$aAxer, Markus$$b1$$ufzj
000859428 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b2$$ufzj
000859428 7001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b3
000859428 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b4$$ufzj
000859428 773__ $$0PERI:(DE-600)2465034-1$$x0068-1261$$y2019
000859428 8564_ $$uhttps://arxiv.org/abs/1806.07712
000859428 8564_ $$uhttps://juser.fz-juelich.de/record/859428/files/arXiv_1806.07712_v4.pdf$$yOpenAccess
000859428 8564_ $$uhttps://juser.fz-juelich.de/record/859428/files/arXiv_1806.07712_v4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859428 909CO $$ooai:juser.fz-juelich.de:859428$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000859428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161196$$aForschungszentrum Jülich$$b0$$kFZJ
000859428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131632$$aForschungszentrum Jülich$$b1$$kFZJ
000859428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b2$$kFZJ
000859428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b4$$kFZJ
000859428 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000859428 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000859428 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x2
000859428 9141_ $$y2018
000859428 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859428 920__ $$lyes
000859428 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000859428 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000859428 980__ $$apreprint
000859428 980__ $$aVDB
000859428 980__ $$aI:(DE-Juel1)INM-1-20090406
000859428 980__ $$aI:(DE-Juel1)JSC-20090406
000859428 980__ $$aUNRESTRICTED
000859428 9801_ $$aFullTexts