000859437 001__ 859437
000859437 005__ 20210130000256.0
000859437 0247_ $$2doi$$a10.1063/1.5027137
000859437 0247_ $$2ISSN$$a0021-8979
000859437 0247_ $$2ISSN$$a0148-6349
000859437 0247_ $$2ISSN$$a1089-7550
000859437 0247_ $$2ISSN$$a1520-8850
000859437 0247_ $$2ISSN$$a2163-5102
000859437 0247_ $$2Handle$$a2128/21268
000859437 0247_ $$2WOS$$aWOS:000435445500013
000859437 037__ $$aFZJ-2019-00293
000859437 082__ $$a530
000859437 1001_ $$00000-0002-7582-8844$$aJagadish Kumar, G.$$b0
000859437 245__ $$aCation distribution and magnetic properties of Zn-substituted CoCr 2 O 4 nanoparticles
000859437 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2018
000859437 3367_ $$2DRIVER$$aarticle
000859437 3367_ $$2DataCite$$aOutput Types/Journal article
000859437 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547731616_2871
000859437 3367_ $$2BibTeX$$aARTICLE
000859437 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859437 3367_ $$00$$2EndNote$$aJournal Article
000859437 520__ $$aCoCr2O4 is a normal spinel where Co occupies the tetrahedral (A) site and Cr occupies the octahedral (B) site; it is important to examine the cation distribution and magnetic properties by substituting a non-magnetic ion like Zn. In this context, we have synthesized pure phase ZnxCo1-xCr2O4 (x = 0.05, 0.1) of crystallite size 10 nm through conventional co-precipitation technique. Fourier transform of Co, Zn, and Cr K-edge spectra obtained from extended X-ray absorption fine structure demonstrates that while Co and Zn prefer the A site, Cr strongly occupies the B site. The paramagnetic to long range ferrimagnetic transition, TC, decreases from 97 K in CoCr2O4 (bulk) to 87.4 K at x = 0.1 with an intermediate TC of 90 K at x = 0.05. The decrease in TC is ascribed to decrease in A-B exchange interaction confirming the preferential occupation of Zn2+ ions towards the A site. The spin-spiral transition, TS, decreases from 27 K in bulk (CoCr2O4) to 24 K at x = 0.1 followed by a spin lock-in transition, TL, observed at 10 K which remains unchanged with increase in Zn concentration. The diffuse neutron scattering in both compositions shows the evidence of long range spiral ordering in contrast to the simultaneous formation of long and short range order in single crystals of CoCr2O4. The decrease in maximum magnetization from 9 to 8 emu/g and an increase in coercivity from 3.2 to 5.2 kOe at 2 K with an increasing Zn concentration from 0.05 to 0.1 have been explained by considering the Yafet-Kittel model
000859437 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000859437 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000859437 588__ $$aDataset connected to CrossRef
000859437 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000859437 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
000859437 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000859437 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
000859437 7001_ $$0P:(DE-HGF)0$$aBanerjee, Alok$$b1
000859437 7001_ $$0P:(DE-HGF)0$$aSinha, A. S. K.$$b2
000859437 7001_ $$0P:(DE-Juel1)130991$$aSu, Y.$$b3
000859437 7001_ $$0P:(DE-Juel1)141702$$aNemkovski, K.$$b4
000859437 7001_ $$0P:(DE-HGF)0$$aRath, Chandana$$b5$$eCorresponding author
000859437 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.5027137$$gVol. 123, no. 22, p. 223905 -$$n22$$p223905 -$$tJournal of applied physics$$v123$$x1089-7550$$y2018
000859437 8564_ $$uhttps://juser.fz-juelich.de/record/859437/files/1.5027137.pdf$$yPublished on 2018-06-14. Available in OpenAccess from 2019-06-14.
000859437 8564_ $$uhttps://juser.fz-juelich.de/record/859437/files/1.5027137.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-06-14. Available in OpenAccess from 2019-06-14.
000859437 909CO $$ooai:juser.fz-juelich.de:859437$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000859437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b3$$kFZJ
000859437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141702$$aForschungszentrum Jülich$$b4$$kFZJ
000859437 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000859437 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000859437 9141_ $$y2018
000859437 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859437 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859437 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000859437 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2017
000859437 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859437 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859437 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859437 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859437 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859437 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859437 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000859437 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859437 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000859437 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859437 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859437 920__ $$lyes
000859437 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859437 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000859437 980__ $$ajournal
000859437 980__ $$aVDB
000859437 980__ $$aUNRESTRICTED
000859437 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859437 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859437 9801_ $$aFullTexts