001     859443
005     20210130000257.0
024 7 _ |a 10.1093/treephys/tpy100
|2 doi
024 7 _ |a 0829-318X
|2 ISSN
024 7 _ |a 1758-4469
|2 ISSN
024 7 _ |a pmid:30265369
|2 pmid
024 7 _ |a WOS:000454356800009
|2 WOS
037 _ _ |a FZJ-2019-00299
082 _ _ |a 580
100 1 _ |a Thomas, Frank M
|0 0000-0003-3697-714X
|b 0
|e Corresponding author
245 _ _ |a Growth and wood isotopic signature of Norway spruce ( Picea abies ) along a small-scale gradient of soil moisture
260 _ _ |a Victoria, BC
|c 2018
|b Heron
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547715666_27089
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Among the environmental factors that have an effect on the isotopic signature of tree rings, the specific impact of soil moisture on the Δ13C and, in particular, the δ18O ratios has scarcely been investigated. We studied the effects of soil type and soil moisture (from moderately moist [Cambisol] to wet [Gleysol]) on the growth and isotopic signature of tree rings of Norway spruce (Picea abies [L.] H. Karst.), a widely distributed forest tree species in Central Europe, at a small spatial scale in a typical mature forest plantation in the low mountain ranges of Western Germany. The δ18O ratios were lower in rings of trees growing at the wettest microsite (Gleysol) than in tree rings from the microsite with moderately moist soil (Cambisol). This indicates higher uptake rates of 18O-unenriched soil water at the Gleysol microsite and corresponds to less negative soil water potentials and higher transpiration rates on the Gleysol plots. Contrary to our expectations, the basal area increments, the Δ13C ratios and the intrinsic water-use efficiency (calculated on the basis of δ13C) did not differ significantly between the Cambisol and the Gleysol microsites. For average values of each microsite and year investigated, we found a significantly positive correlation between δ13C and δ18O, which indicates a consistent stomatal control over gas exchange along the soil moisture gradient at comparable relative air humidity in the stand. As δ18O ratios of tree rings integrate responses of wood formation to soil moisture over longer periods of time, they may help to identify microsites differing in soil water availability along small-scale gradients of soil moisture under homogeneous climatic conditions and to explain the occurrence of particular tree species along those gradients in forest stands.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rzepecki, Andreas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lücke, Andreas
|0 P:(DE-Juel1)129567
|b 2
|u fzj
700 1 _ |a Wiekenkamp, Inge
|0 P:(DE-Juel1)157744
|b 3
700 1 _ |a Rabbel, Inken
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pütz, Thomas
|0 P:(DE-Juel1)129523
|b 5
|u fzj
700 1 _ |a Neuwirth, Burkhard
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1093/treephys/tpy100
|g Vol. 38, no. 12, p. 1855 - 1870
|0 PERI:(DE-600)1473475-8
|n 12
|p 1855 - 1870
|t Tree physiology
|v 38
|y 2018
|x 1758-4469
856 4 _ |u https://juser.fz-juelich.de/record/859443/files/tpy100.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/859443/files/tpy100.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:859443
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129567
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129523
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TREE PHYSIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21