000859469 001__ 859469
000859469 005__ 20210130000306.0
000859469 0247_ $$2doi$$a10.1107/S160057671800078X
000859469 0247_ $$2ISSN$$a0021-8898
000859469 0247_ $$2ISSN$$a1600-5767
000859469 0247_ $$2WOS$$aWOS:000424121500003
000859469 0247_ $$2altmetric$$aaltmetric:32446692
000859469 037__ $$aFZJ-2019-00325
000859469 082__ $$a540
000859469 1001_ $$0P:(DE-Juel1)176326$$aThoma, Henrik$$b0$$eFirst author$$ufzj
000859469 245__ $$aPolarized neutron diffraction using a novel high-Tc superconducting magnet on the single-crystal diffractometer POLI at MLZ
000859469 260__ $$a[S.l.]$$bWiley-Blackwell$$c2018
000859469 3367_ $$2DRIVER$$aarticle
000859469 3367_ $$2DataCite$$aOutput Types/Journal article
000859469 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549535103_13321
000859469 3367_ $$2BibTeX$$aARTICLE
000859469 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859469 3367_ $$00$$2EndNote$$aJournal Article
000859469 520__ $$aThe polarized single-crystal diffractometer POLI is the first neutron scattering instrument routinely using 3 He spin filters both to produce and to analyse neutron polarization. The instrument, with a non-magnetic goniometer, was designed to perform two types of polarized neutron diffraction experiment: spherical neutron polarimetry, also known as full three-dimensional polarization analysis in zero magnetic field, and classical polarized neutron diffraction, also called the flipping-ratio (FR) method, in high applied magnetic fields. Reported here is the implementation of the FR setup for short-wavelength neutrons on POLI using a new high- T c superconducting magnet with a maximal field of 2.2 T. The complete setup consists of a 3 He polarizer, a nutator, a Mezei-type flipper, guide fields and dedicated pole pieces, together with the magnet. Each component, as well as the whole setup, was numerically simulated, optimized, built and finally successfully tested under real experimental conditions on POLI. The measured polarized neutron spin transport efficiency is about 99% at different wavelengths, e.g. as short as 0.7 Å, and up to the maximal available field of the magnet. No further depolarization of the 3 He cells due to stray fields of the magnet occurs. The additional use of the available 3 He analyser allows uniaxial polarization analysis experiments in fields up to 1.2 T. The results of the first experiment on the field-dependent distribution of the trigonal antiferromagnetic domains in haematite (α-Fe 2 O 3 ) are presented and compared with the literature data.
000859469 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000859469 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000859469 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000859469 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x3
000859469 588__ $$aDataset connected to CrossRef
000859469 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000859469 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000859469 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x2
000859469 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x3
000859469 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000859469 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x0
000859469 7001_ $$0P:(DE-HGF)0$$aLuberstetter, Wolfgang$$b1
000859469 7001_ $$0P:(DE-HGF)0$$aPeters, Jürgen$$b2
000859469 7001_ $$0P:(DE-Juel1)164298$$aHutanu, Vladimir$$b3$$eCorresponding author$$ufzj
000859469 773__ $$0PERI:(DE-600)2020879-0$$a10.1107/S160057671800078X$$gVol. 51, no. 1, p. 17 - 26$$n1$$p17 - 26$$tJournal of applied crystallography$$v51$$x1600-5767$$y2018
000859469 8564_ $$uhttps://juser.fz-juelich.de/record/859469/files/in5001.pdf$$yRestricted
000859469 8564_ $$uhttps://juser.fz-juelich.de/record/859469/files/in5001.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859469 909CO $$ooai:juser.fz-juelich.de:859469$$pVDB$$pVDB:MLZ
000859469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176326$$aForschungszentrum Jülich$$b0$$kFZJ
000859469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164298$$aForschungszentrum Jülich$$b3$$kFZJ
000859469 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000859469 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000859469 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000859469 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000859469 9141_ $$y2018
000859469 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859469 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859469 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859469 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859469 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000859469 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859469 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859469 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859469 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859469 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859469 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CRYSTALLOGR : 2017
000859469 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859469 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859469 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859469 920__ $$lyes
000859469 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859469 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000859469 980__ $$ajournal
000859469 980__ $$aVDB
000859469 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859469 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859469 980__ $$aUNRESTRICTED