000859470 001__ 859470
000859470 005__ 20210130000307.0
000859470 037__ $$aFZJ-2019-00326
000859470 041__ $$aEnglish
000859470 1001_ $$0P:(DE-Juel1)176326$$aThoma, Henrik$$b0$$eFirst author$$ufzj
000859470 1112_ $$aPolarised Neutrons for Condensed-Matter Investigations 2018$$cAbingdon$$d2018-07-03 - 2018-07-06$$gPNCMI 2018$$wEngland
000859470 245__ $$aSetup for polarized neutron diffraction using a novel high-Tc superconducting magnet at instrument POLI at MLZ
000859470 260__ $$c2018
000859470 3367_ $$033$$2EndNote$$aConference Paper
000859470 3367_ $$2BibTeX$$aINPROCEEDINGS
000859470 3367_ $$2DRIVER$$aconferenceObject
000859470 3367_ $$2ORCID$$aCONFERENCE_POSTER
000859470 3367_ $$2DataCite$$aOutput Types/Conference Poster
000859470 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1547716914_7247$$xAfter Call
000859470 520__ $$aPolarized neutron diffraction (PND) is a powerful method to investigate magnetic structures. PND can be used for very precise magnetization measurements even for weak magnetic contributions. It allows the high-quality determination of magnetic form factors, to untangle complex (e.g. chiral) magnetic structures, and to follow the movement of magnetic domains. In this technique, spin flip measurements are carried out on a sample, located in a strong magnetic field. Optionally, the scattered beam can be analyzed to perform a polarization analysis along the given field direction at the sample.A new PND setup has been developed for the hot neutron single crystal diffractometer POLI [1] at MLZ. This setup consists of a ³He spin filter cell [2] for polarization, a Mezei flipper optimized for short-wavelength neutrons, and a new high Tc superconducting magnet producing fields up to 2.2 T. Because the magnet provides a symmetric field configuration, a dedicated guide field system was designed in order to avoid neutron depolarization in the zero-field node. The polarization transport efficiency of the whole setup was numerically simulated and optimized [3].By using either a Heusler crystal at the sample position or a second spin filter cell as analyzer, the polarization losses in the setup were confirmed to be below 2% over the total field range of the magnet. With the ³He cell as polarizer, a beam polarization over 90% at a wavelength as short as 0.7 Å is reliably reachable. The stray fields of the magnet did not affect the relaxation time T1 of the ³He spin filter polarizer. Typical T1 values above 100 h are measured. . First experiments with antiferromagnetic and paramagnetic samples using the new setup have been successfully performed. Using the CCSL software, reconstruction of the field induced spin density distribution in the weak ferromagnet MnCO3 was performed in the paramagnetic state and compared to the literature data. Our results shows the high performance and good resolution of the setup.[1] V. Hutanu, Heinz Maier-Leibnitz Zentrum, Journal of large-scale research facilities, 1, A16 (2015)[2] V. Hutanu, M. Meven, S. Masalovich et al., J. Phys.: Conf. Ser., 294, 012012 (2011)[3] H. Thoma, W. Luberstetter, J. Peters, and V. Hutanu, J. Appl. Cryst. 51, 17-26 (2018)
000859470 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000859470 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x1
000859470 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000859470 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000859470 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000859470 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x1
000859470 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x2
000859470 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x3
000859470 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000859470 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x1
000859470 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x0
000859470 7001_ $$0P:(DE-Juel1)164298$$aHutanu, Vladimir$$b1$$eCorresponding author$$ufzj
000859470 7001_ $$0P:(DE-HGF)0$$aDeng, Hao$$b2
000859470 7001_ $$0P:(DE-HGF)0$$aRoth, Georg$$b3$$eLast author
000859470 909CO $$ooai:juser.fz-juelich.de:859470$$pVDB$$pVDB:MLZ
000859470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176326$$aForschungszentrum Jülich$$b0$$kFZJ
000859470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164298$$aForschungszentrum Jülich$$b1$$kFZJ
000859470 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000859470 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000859470 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000859470 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000859470 9141_ $$y2018
000859470 920__ $$lyes
000859470 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859470 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000859470 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000859470 980__ $$aposter
000859470 980__ $$aVDB
000859470 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859470 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859470 980__ $$aI:(DE-82)080009_20140620
000859470 980__ $$aUNRESTRICTED