001     859474
005     20250129092506.0
024 7 _ |a 10.1016/j.nima.2018.12.012
|2 doi
024 7 _ |a 0168-9002
|2 ISSN
024 7 _ |a 1872-9576
|2 ISSN
024 7 _ |a 2128/24336
|2 Handle
024 7 _ |a WOS:000511297400084
|2 WOS
037 _ _ |a FZJ-2019-00330
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Kumar, S.
|0 P:(DE-Juel1)169828
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Development of a solid-state position sensitive neutron detector prototype based on  6Li-glass scintillator and digital SiPM arrays
260 _ _ |a Amsterdam
|c 2020
|b North-Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1584961482_13526
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photomultiplier tubes (PMT) have been used extensively as the photodetector of choice in scintillation baseddetectors for cold and thermal neutrons. However, the limitations of PMT based scintillation neutron detectorssuch as their sensitivity to magnetic fields or their high operating voltages (> 1 kV) have triggered the search foralternative photodetectors for these applications. Silicon photomultipliers (SiPM) operate in the single photonregime, have lower operating voltages (∼20–70 V) than PMTs and are insusceptible to magnetic field. Additionalfeatures of the SiPMs like their low production cost, compactness and higher readout rates make them apotential candidate to replace the photodetector part in these developments. Therefore, we are developing ascintillation neutron detector based on SiPM technology. The detector prototype with an active detection area of13 cm × 13 cm is aimed to be used in the future at the TREFF instrument of the Heinz Maier-Leibnitz Zentrum (MLZ)in Garching, Germany, for neutron reflectometry experiments. In this paper, we report the detector concept, itsdevelopment and the simulation results for design optimization.
536 _ _ |a 632 - Detector technology and systems (POF3-632)
|0 G:(DE-HGF)POF3-632
|c POF3-632
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 0
650 1 7 |a Engineering, Industrial Materials and Processing
|0 V:(DE-MLZ)GC-1601-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e TREFF: Neutronenreflektometer
|f NL5S
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)TREFF-20140101
|5 EXP:(DE-MLZ)TREFF-20140101
|6 EXP:(DE-MLZ)NL5S-20140101
|x 0
700 1 _ |a Herzkamp, M.
|0 P:(DE-Juel1)156322
|b 1
|u fzj
700 1 _ |a Durini, D.
|0 P:(DE-Juel1)161528
|b 2
|u fzj
700 1 _ |a Nöldgen, H.
|0 P:(DE-Juel1)133922
|b 3
|u fzj
700 1 _ |a van Waasen, S.
|0 P:(DE-Juel1)142562
|b 4
|u fzj
773 _ _ |a 10.1016/j.nima.2018.12.012
|g p. S0168900218318102
|0 PERI:(DE-600)1466532-3
|p 161697
|t Nuclear instruments & methods in physics research / A Accelerators, spectrometers, detectors and associated equipment Section A
|v 954
|y 2020
|x 0168-9002
856 4 _ |u https://juser.fz-juelich.de/record/859474/files/S.%20Kumar_NIMA_Revised.pdf
|y Published on 2018-12-26. Available in OpenAccess from 2020-12-26.
856 4 _ |u https://juser.fz-juelich.de/record/859474/files/S.%20Kumar_NIMA_Revised.pdf?subformat=pdfa
|x pdfa
|y Published on 2018-12-26. Available in OpenAccess from 2020-12-26.
909 C O |o oai:juser.fz-juelich.de:859474
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169828
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156322
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-632
|2 G:(DE-HGF)POF3-600
|v Detector technology and systems
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL INSTRUM METH A : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21