000859476 001__ 859476
000859476 005__ 20240712084522.0
000859476 0247_ $$2doi$$a10.1021/acs.jpcc.8b09400
000859476 0247_ $$2ISSN$$a1932-7447
000859476 0247_ $$2ISSN$$a1932-7455
000859476 0247_ $$2WOS$$aWOS:000452693300017
000859476 037__ $$aFZJ-2019-00332
000859476 082__ $$a530
000859476 1001_ $$0P:(DE-Juel1)166075$$aKaienburg, Pascal$$b0$$eCorresponding author
000859476 245__ $$aHow Contact Layers Control Shunting Losses from Pinholes in Thin-Film Solar Cells
000859476 260__ $$aWashington, DC$$bSoc.66306$$c2018
000859476 3367_ $$2DRIVER$$aarticle
000859476 3367_ $$2DataCite$$aOutput Types/Journal article
000859476 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547818900_26450
000859476 3367_ $$2BibTeX$$aARTICLE
000859476 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859476 3367_ $$00$$2EndNote$$aJournal Article
000859476 520__ $$aAn absorber layer that does not fully cover the substrate is a common issue for thin-film solar cells such as perovskites. However, models that describe the impact of pinholes on solar cell performance are scarce. Here, we demonstrate that certain combinations of contact layers suppress the negative impact of pinholes better than others. The absence of the absorber at a pinhole gives way to a direct electrical contact between the two semiconducting electron and hole transport layers. The key to understand how pinholes impact the solar cell performance is the resulting nonlinear diodelike behavior of the current across the interface between these two layers (commonly referred to as a shunt current). Based on experimentally obtained data that mimic the current–voltage characteristics across these interfaces, we develop a simple model to predict pinhole-induced solar cell performance deterioration. We investigate typical contact layer combinations such as TiO2/spiro-OMeTAD, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/phenyl-C61-butyric acid methyl ester, and TiO2/poly(3-hexylthiophene). Our results directly apply to perovskite and other emerging inorganic thin-film solar cells, and the methodology is transferable to CIGS and CdTe. We find substantial differences between five commonly applied contact layer combinations and conclude that it is not sufficient to optimize the contact layers of any real-world thin-film solar cell only with regard to the applied absorber. Instead, in the context of laboratory and industrial fabrication, the tolerance against pinholes (i.e., the mitigation of shunt losses via existing pinholes) needs to be considered as an additional, important objective.
000859476 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000859476 588__ $$aDataset connected to CrossRef
000859476 7001_ $$0P:(DE-HGF)0$$aHartnagel, Paula$$b1
000859476 7001_ $$0P:(DE-Juel1)130284$$aPieters, Bart$$b2
000859476 7001_ $$0P:(DE-HGF)0$$aYu, Jiaoxian$$b3
000859476 7001_ $$0P:(DE-Juel1)169473$$aGrabowski, David$$b4
000859476 7001_ $$0P:(DE-Juel1)169264$$aLiu, Zhifa$$b5
000859476 7001_ $$0P:(DE-Juel1)169644$$aHaddad, Jinane$$b6
000859476 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b7
000859476 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b8
000859476 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.8b09400$$gVol. 122, no. 48, p. 27263 - 27272$$n48$$p27263 - 27272$$tThe journal of physical chemistry <Washington, DC> / C C, Nanomaterials and interfaces$$v122$$x1932-7455$$y2018
000859476 8564_ $$uhttps://juser.fz-juelich.de/record/859476/files/acs.jpcc.8b09400.pdf$$yRestricted
000859476 8564_ $$uhttps://juser.fz-juelich.de/record/859476/files/acs.jpcc.8b09400.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859476 909CO $$ooai:juser.fz-juelich.de:859476$$pVDB
000859476 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166075$$aForschungszentrum Jülich$$b0$$kFZJ
000859476 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130284$$aForschungszentrum Jülich$$b2$$kFZJ
000859476 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169473$$aForschungszentrum Jülich$$b4$$kFZJ
000859476 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169264$$aForschungszentrum Jülich$$b5$$kFZJ
000859476 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169644$$aForschungszentrum Jülich$$b6$$kFZJ
000859476 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b7$$kFZJ
000859476 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b8$$kFZJ
000859476 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000859476 9141_ $$y2018
000859476 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2017
000859476 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859476 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859476 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859476 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859476 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859476 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859476 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859476 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859476 920__ $$lyes
000859476 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000859476 980__ $$ajournal
000859476 980__ $$aVDB
000859476 980__ $$aI:(DE-Juel1)IEK-5-20101013
000859476 980__ $$aUNRESTRICTED
000859476 981__ $$aI:(DE-Juel1)IMD-3-20101013