000859485 001__ 859485
000859485 005__ 20210130000310.0
000859485 0247_ $$2doi$$a10.1016/j.physb.2017.10.062
000859485 0247_ $$2ISSN$$a0921-4526
000859485 0247_ $$2ISSN$$a1873-2135
000859485 0247_ $$2WOS$$aWOS:000431075600015
000859485 037__ $$aFZJ-2019-00338
000859485 082__ $$a530
000859485 1001_ $$0P:(DE-HGF)0$$aPavlosiuk, Orest$$b0
000859485 245__ $$aMagnetic structures of RE PdBi half-Heusler bismuthides ( RE = Gd, Tb, Dy, Ho, Er)
000859485 260__ $$aAmsterdam$$bElsevier$$c2018
000859485 3367_ $$2DRIVER$$aarticle
000859485 3367_ $$2DataCite$$aOutput Types/Journal article
000859485 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549534569_20530
000859485 3367_ $$2BibTeX$$aARTICLE
000859485 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859485 3367_ $$00$$2EndNote$$aJournal Article
000859485 520__ $$aWe present results of neutron diffraction on single crystals of several equiatomic ternary compounds of rare-earth elements with palladium and bismuth, crystallizing with cubic MgAgAs-type structure (half-Heusler phases). Band structure calculations showed that many members of that family possess electronic band inversion, which may lead to occurrence of topological insulator or topological semimetal. But even for the compounds without intrinsic band inversion another way of topologically non-trivial state realization, through a specific antiferromagnetic order, has been theoretically proposed.Our results show that the antiferromagnetic structures of all studied bismuthides are characterized by the propagation vector, allowing for antiferromagnetic topological insulator state. Therefore, the antiferromagnetic representatives of half-Heusler family are excellent candidates for extended investigations of coexistence of superconductivity, magnetic order and non-trivial topology of electronic states.
000859485 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000859485 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000859485 588__ $$aDataset connected to CrossRef
000859485 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000859485 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
000859485 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x2
000859485 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000859485 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0
000859485 7001_ $$0P:(DE-HGF)0$$aFabreges, Xavier$$b1
000859485 7001_ $$0P:(DE-HGF)0$$aGukasov, Arsen$$b2
000859485 7001_ $$0P:(DE-Juel1)164297$$aMeven, Martin$$b3$$ufzj
000859485 7001_ $$0P:(DE-HGF)0$$aKaczorowski, Dariusz$$b4
000859485 7001_ $$0P:(DE-HGF)0$$aWiśniewski, Piotr$$b5$$eCorresponding author
000859485 773__ $$0PERI:(DE-600)1466579-7$$a10.1016/j.physb.2017.10.062$$gVol. 536, p. 56 - 59$$p56 - 59$$tPhysica / B Condensed matter B$$v536$$x0921-4526$$y2018
000859485 8564_ $$uhttps://juser.fz-juelich.de/record/859485/files/1-s2.0-S0921452617307950-main.pdf$$yRestricted
000859485 8564_ $$uhttps://juser.fz-juelich.de/record/859485/files/1-s2.0-S0921452617307950-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859485 909CO $$ooai:juser.fz-juelich.de:859485$$pVDB$$pVDB:MLZ
000859485 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000859485 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859485 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000859485 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYSICA B : 2017
000859485 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859485 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859485 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859485 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859485 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859485 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859485 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859485 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859485 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000859485 9141_ $$y2018
000859485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich$$b3$$kFZJ
000859485 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164297$$aRWTH Aachen$$b3$$kRWTH
000859485 9101_ $$0I:(DE-588b)4597118-3$$6P:(DE-Juel1)164297$$aHeinz Maier-Leibnitz Zentrum$$b3$$kMLZ
000859485 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000859485 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000859485 920__ $$lyes
000859485 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859485 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000859485 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000859485 980__ $$ajournal
000859485 980__ $$aVDB
000859485 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859485 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859485 980__ $$aI:(DE-588b)4597118-3
000859485 980__ $$aUNRESTRICTED