001     859494
005     20250129092506.0
024 7 _ |a 2128/21206
|2 Handle
037 _ _ |a FZJ-2019-00346
100 1 _ |a von Hebel, Christian
|0 P:(DE-Juel1)145932
|b 0
|e Corresponding author
|u fzj
111 2 _ |a TR32 Conference: Terrestrial Systems Research: Monitoring, Prediction & High Performance Computing
|c Bonn
|d 2018-04-04 - 2018-04-06
|w Germany
245 _ _ |a Ground-based quantitative electromagnetic induction measurements and inversions show that patterns in airborne hyperspectral data are caused by subsoil structures
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1548257257_28684
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Non-invasive geophysical fixed-boom multi-coil electromagnetic induction (EMI) instruments return apparent electrical conductivity (ECa) values that depend on subsurface soil properties. Using different transmitter-receiver coil separations and orientations, ECa values of different depths of investigation (DOI) are obtained. After calibration, the quantitative EMI data are inverted to obtain electrical conductivity (σ) changes over depth assuming a layered subsurface model. Airborne hyperspectral measurements are used to estimate plant performance and growth, however, the top- and subsoil structural changes influencing plant performance and growth is often ignored. Here, we have investigated the origin of observed patterns in sun-induced fluorescence data by performing quantitative large-scale EMI measurements and quantitative inversions. The fixed-boom multi-coil EMI ECa data of nine coil configurations indicated spatial patterns due to buried paleo-river channels. After inversion, the obtained layered quasi-3D electrical conductivity model showed a relatively homogeneous ploughing layer and the presence of the paleo-river channels at > 1 m depth. Contrary to often used assumptions, σ of the ploughing layer only showed minor correlation to fluorescence data (r ~ 0.35), while the subsoil returned a significant correlation (r ~ 0.65) indicating a substantial influence of the subsoil on the plant performance, especially during dry periods which is probably due to differences in soil water holding capacity. For the first time, we have related soil-depth specific 3D subsurface information obtained by quantitative multi-coil EMI data inversions with sun-induced fluorescence data and have shown that above surface plant performance is caused by subsoil structural changes. Consequently, the subsurface structures should be incorporated in plant modeling as well as in terrestrial system modeling tools to improve the understanding of soil-vegetation-atmosphere exchange processes.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
700 1 _ |a Matveeva, Maria
|0 P:(DE-Juel1)130098
|b 1
|u fzj
700 1 _ |a Verweij, Elizabeth
|0 P:(DE-Juel1)169328
|b 2
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 3
|u fzj
700 1 _ |a Rademske, Patrick
|0 P:(DE-Juel1)162306
|b 4
|u fzj
700 1 _ |a Brogi, Cosimo
|0 P:(DE-Juel1)168418
|b 5
|u fzj
700 1 _ |a Kaufmann, Manuela
|0 P:(DE-Juel1)168553
|b 6
|u fzj
700 1 _ |a Mester, Achim
|0 P:(DE-Juel1)140421
|b 7
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 8
|u fzj
700 1 _ |a van der Kruk, Jan
|0 P:(DE-Juel1)129561
|b 9
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/859494/files/CvH_EMI-4-Plants_Abstract_TR32_Conference2018_final.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/859494/files/CvH_EMI-4-Plants_Abstract_TR32_Conference2018_final.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:859494
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145932
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130098
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)168418
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)168553
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)140421
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129561
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21