000859498 001__ 859498
000859498 005__ 20250129092506.0
000859498 037__ $$aFZJ-2019-00350
000859498 1001_ $$0P:(DE-Juel1)145932$$avon Hebel, Christian$$b0$$eCorresponding author$$ufzj
000859498 1112_ $$aEuropean Geoscience Union General Assembly$$cVienna$$d2018-04-08 - 2018-04-13$$gEGU$$wAustria
000859498 245__ $$aUnderstanding soil-plant interaction by analyzing quantitative electromagnetic induction measurements and inversions together with airborne hyperspectral data
000859498 260__ $$c2018
000859498 3367_ $$033$$2EndNote$$aConference Paper
000859498 3367_ $$2BibTeX$$aINPROCEEDINGS
000859498 3367_ $$2DRIVER$$aconferenceObject
000859498 3367_ $$2ORCID$$aCONFERENCE_POSTER
000859498 3367_ $$2DataCite$$aOutput Types/Conference Poster
000859498 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1548257947_28686$$xAfter Call
000859498 520__ $$aSoil structural changes (layering and texture) influence above surface processes such as plant performance and growth, which is visible in airborne hyperspectral measurements. However, the soil structural changes below the ploughing layer are often ignored when studying spatial plant patterns. Here, we investigate the origin of these patterns due to soil structural changes by analyzing airborne hyperspectral data in combination with non-invasive geophysical fixed-boom multi-coil electromagnetic induction (EMI) data. The HyPlant dual channel airborne imaging spectrometer obtains sun-induced red- and far-red fluorescence data as well as derived vegetation indices, which indicate plant performance and growth. The EMI instruments measure the soil apparent electrical conductivity (ECa) that is a weighted average value over a specific depth range depending on the transmitter-receiver coil configuration i.e. coil separation and orientation. After ECa calibration and quantitative EMI data inversion, a layeredsubsurface electrical conductivity () model reflecting soil structural changes is obtained. At our test site, thefixed-boom multi-coil ECa maps of nine EMI coil configurations spatially indicated soil patterns due to buriedpaleo-river channels that interact with the plants as observed in the airborne hyperspectral data. After EMI datainversions, the layered quasi-3D  model showed a relatively homogeneous ploughing layer in the upper 30 cmand the paleo-river channels appeared in the subsoil below approximately 0.85 m depth. The correlation coefficient(r) between the layer  and hyperspectral data confirmed that not the ploughing layer (r  0.35) but the subsoil(r  0.65) was responsible for plant performance and growth due to differences in soil structure and thus waterholding capacity especially during dry periods. For the first time, we combined depth specific 3D soil structuralinformation obtained by quantitative fixed-boom multi-coil EMI data inversions and airborne hyperspectral data toshow that the above surface plant performance is strongly influenced by the subsoil at the investigated site. Conclusively,quantitative multi-coil EMI measurements and inversions can deliver valuable information about the topand subsoil structural organization that needs to be included in plant modeling tools for an improved descriptionof above and below surface processes.
000859498 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000859498 7001_ $$0P:(DE-Juel1)130098$$aMatveeva, Maria$$b1$$ufzj
000859498 7001_ $$0P:(DE-Juel1)169328$$aVerweij, Elizabeth$$b2
000859498 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b3$$ufzj
000859498 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b4$$ufzj
000859498 7001_ $$0P:(DE-Juel1)168418$$aBrogi, Cosimo$$b5$$ufzj
000859498 7001_ $$0P:(DE-Juel1)168553$$aKaufmann, Manuela$$b6$$ufzj
000859498 7001_ $$0P:(DE-Juel1)140421$$aMester, Achim$$b7$$ufzj
000859498 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b8$$ufzj
000859498 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b9$$ufzj
000859498 8564_ $$uhttps://juser.fz-juelich.de/record/859498/files/CvH_EMI-4-Plants_Abstract_EGU2018-16685.pdf$$yRestricted
000859498 8564_ $$uhttps://juser.fz-juelich.de/record/859498/files/CvH_EMI-4-Plants_Abstract_EGU2018-16685.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859498 909CO $$ooai:juser.fz-juelich.de:859498$$pVDB
000859498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145932$$aForschungszentrum Jülich$$b0$$kFZJ
000859498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130098$$aForschungszentrum Jülich$$b1$$kFZJ
000859498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b3$$kFZJ
000859498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b4$$kFZJ
000859498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168418$$aForschungszentrum Jülich$$b5$$kFZJ
000859498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168553$$aForschungszentrum Jülich$$b6$$kFZJ
000859498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140421$$aForschungszentrum Jülich$$b7$$kFZJ
000859498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b8$$kFZJ
000859498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b9$$kFZJ
000859498 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000859498 9141_ $$y2018
000859498 920__ $$lyes
000859498 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000859498 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x1
000859498 980__ $$aposter
000859498 980__ $$aVDB
000859498 980__ $$aI:(DE-Juel1)IBG-3-20101118
000859498 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000859498 980__ $$aUNRESTRICTED
000859498 981__ $$aI:(DE-Juel1)PGI-4-20110106